Home
Class 12
MATHS
Lt(x->oo)(1/e-x/(1+x))^x=...

`Lt_(x->oo)(1/e-x/(1+x))^x=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Lt_(x rarr oo)((1)/(e)-(x)/(1+x))^(x)=

(lim_(x rarr oo)((1)/(e)-(x)/(1+x))^(x) is equal to (a)(e)/(1-e)(b)0(c)(e)/(e^(1-e))(d) does not exist

The value of lim_(xrarr oo) x{(1)/(e)-((x)/(x+1))^x} , is

2. Lt_(x rarr oo)(x)/(1+x)

For x>0,Ltx^((1)/(x))+Lt_(x rarr oo)x^((1)/(x))=

The value of Lt_(x->0)((1+x)^((1)/(x))-e)/(x)=

If f(x)=log_(e)((1-x)/(1+x)),|x| lt 1, " then " f((2x)/(1+x^(2))) is equal to

Lt_(x rarr oo)(x^(3))/(e^(x))

Lt_(x rarr oo)(1)/((x-3)^(2))