Home
Class 9
MATHS
Solve, using cross - multiplication : ...

Solve, using cross - multiplication :
0.4x + 1.5y = 6.5
0.3x + 0.2y = 0.9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using cross multiplication, we start with the given equations: 1. \( 0.4x + 1.5y = 6.5 \) (Equation 1) 2. \( 0.3x + 0.2y = 0.9 \) (Equation 2) ### Step 1: Identify coefficients From the equations, we can identify the coefficients: - For Equation 1: - \( a_1 = 0.4 \) - \( b_1 = 1.5 \) - \( c_1 = 6.5 \) - For Equation 2: - \( a_2 = 0.3 \) - \( b_2 = 0.2 \) - \( c_2 = 0.9 \) ### Step 2: Apply the cross multiplication formula The formulas for \( x \) and \( y \) using cross multiplication are: \[ x = \frac{b_1c_2 - b_2c_1}{a_1b_2 - a_2b_1} \] \[ y = \frac{c_1a_2 - c_2a_1}{a_1b_2 - a_2b_1} \] ### Step 3: Calculate \( x \) Substituting the values into the formula for \( x \): \[ x = \frac{(1.5 \cdot 0.9) - (0.2 \cdot 6.5)}{(0.4 \cdot 0.2) - (0.3 \cdot 1.5)} \] Calculating the numerator: \[ 1.5 \cdot 0.9 = 1.35 \] \[ 0.2 \cdot 6.5 = 1.3 \] So, \[ 1.35 - 1.3 = 0.05 \] Calculating the denominator: \[ 0.4 \cdot 0.2 = 0.08 \] \[ 0.3 \cdot 1.5 = 0.45 \] So, \[ 0.08 - 0.45 = -0.37 \] Now substituting back: \[ x = \frac{0.05}{-0.37} \approx -0.135135135 \] Thus, \[ x \approx -\frac{5}{37} \] ### Step 4: Calculate \( y \) Now substituting the values into the formula for \( y \): \[ y = \frac{(6.5 \cdot 0.3) - (0.9 \cdot 0.4)}{(0.4 \cdot 0.2) - (0.3 \cdot 1.5)} \] Calculating the numerator: \[ 6.5 \cdot 0.3 = 1.95 \] \[ 0.9 \cdot 0.4 = 0.36 \] So, \[ 1.95 - 0.36 = 1.59 \] Using the same denominator as before: \[ 0.08 - 0.45 = -0.37 \] Now substituting back: \[ y = \frac{1.59}{-0.37} \approx -4.297297297 \] Thus, \[ y \approx -\frac{159}{37} \] ### Final Answers The solutions to the equations are: \[ x \approx -\frac{5}{37}, \quad y \approx -\frac{159}{37} \]
Promotional Banner

Topper's Solved these Questions

  • SIMULTANEOUS EQUATIONS

    ICSE|Exercise EXERCISE 6 (D)|4 Videos
  • SIMULTANEOUS EQUATIONS

    ICSE|Exercise EXERCISE 6 (E)|18 Videos
  • SIMULTANEOUS EQUATIONS

    ICSE|Exercise EXERCISE 6 (B)|20 Videos
  • RECTILINEAR FIGURES

    ICSE|Exercise QUADRILATERALS AND ITS PROPERTIES - 4 MARKS QUESTIONS|7 Videos
  • SIMULTANEOUS LINEAR EQUATIONS IN TWO VARIABLES

    ICSE|Exercise Topic 2 (4 Marks questions)|8 Videos

Similar Questions

Explore conceptually related problems

Solve, using cross - multiplication : 4x - 3y = 0 2x + 3y = 18

Solve, using cross - multiplication : 8x + 5y = 9 3x + 2y = 4

Solve, using cross - multiplication : 4x + 6y = 15 3x - 4y = 7

Solve, using cross - multiplication : 2x + 3y - 17 = 0 and 3x - 2y - 6 = 0 .

Solve, using cross - multiplication : 4x + 3y = 17 3x - 4y + 6 =0

Solve, using cross - multiplication : 5x + 4y + 14 = 0 3 = - 10 - 4y

Solve, using cross - multiplication : 4x - 3y - 11 = 0 6x + 7y - 5 = 0

Solve, using cross - multiplication : x - y + 2 = 0 7x + 9y = 130

Solve, using cross - multiplication : 6x + 7y - 11 = 0 5x + 2y = 13

Solve, using cross - multiplication : 4x - 7y + 28 = 0 and -7x + 5y + 9 = 0 .