Home
Class 9
MATHS
Solve : 5x + (8)/(y) = 19 3x - (4...

Solve :
`5x + (8)/(y) = 19`
`3x - (4)/(y) = 7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the simultaneous equations: 1. **Write down the equations:** \[ 5x + \frac{8}{y} = 19 \quad \text{(Equation 1)} \] \[ 3x - \frac{4}{y} = 7 \quad \text{(Equation 2)} \] 2. **Multiply Equation 2 by 2 to eliminate the fraction:** \[ 2(3x - \frac{4}{y}) = 2(7) \] This gives us: \[ 6x - \frac{8}{y} = 14 \quad \text{(Equation 3)} \] 3. **Now, add Equation 1 and Equation 3:** \[ (5x + \frac{8}{y}) + (6x - \frac{8}{y}) = 19 + 14 \] Simplifying this, we have: \[ 5x + 6x + \frac{8}{y} - \frac{8}{y} = 33 \] Which simplifies to: \[ 11x = 33 \] 4. **Solve for \(x\):** \[ x = \frac{33}{11} = 3 \] 5. **Substitute \(x = 3\) back into Equation 1 to find \(y\):** \[ 5(3) + \frac{8}{y} = 19 \] This simplifies to: \[ 15 + \frac{8}{y} = 19 \] 6. **Isolate \(\frac{8}{y}\):** \[ \frac{8}{y} = 19 - 15 \] \[ \frac{8}{y} = 4 \] 7. **Solve for \(y\):** \[ y = \frac{8}{4} = 2 \] 8. **Final solution:** \[ x = 3, \quad y = 2 \]
Promotional Banner

Topper's Solved these Questions

  • SIMULTANEOUS EQUATIONS

    ICSE|Exercise EXERCISE 6 (E)|18 Videos
  • SIMULTANEOUS EQUATIONS

    ICSE|Exercise EXERCISE 6 (F)|10 Videos
  • SIMULTANEOUS EQUATIONS

    ICSE|Exercise EXERCISE 6 (C)|12 Videos
  • RECTILINEAR FIGURES

    ICSE|Exercise QUADRILATERALS AND ITS PROPERTIES - 4 MARKS QUESTIONS|7 Videos
  • SIMULTANEOUS LINEAR EQUATIONS IN TWO VARIABLES

    ICSE|Exercise Topic 2 (4 Marks questions)|8 Videos

Similar Questions

Explore conceptually related problems

Solve : 4x + (6)/(y ) = 15 and 3x - (4)/(y) = 7 . Hence, find 'a' if y = ax -2.

Solve : (9)/(x) - (4)/(y) = 8 (13)/(x) + (7)/(y) =101

Solve : 3x+ 2y = 14 - x+ 4y = 7

Solve : (7 + x)/(5) - (2x - y)/(4) = 3y - 5 (5y - 7)/(2) + (4x - 3)/(6) = 18 - 5x

Solve: (y-8)/3=(7-4y)/7

Solve : (3x + 2y - 7)^(2) + (5x + 7y - 13)^(2) = 0 , for real values of x and y.

Solve : 5^(x)= 25 xx 5 ^(y) and 8 xx 2 ^(y) = 4 ^(x)

Solve : (3)/(x)-(2)/(y)=0 and (2)/(x)+(5)/(y)=19 . Hence , find 'a' if y=ax+3

Solve {:(2x + y = 23),(4x - y = 19):}

Solve: {:(3x - 4y - 1 = 0),(2x - (8)/(3)y + 5 = 0):}