Home
Class 9
MATHS
In DeltaABC, angleB=90^(@), find the sid...

In `DeltaABC, angleB=90^(@)`, find the sides of the triangle, if :
(i) `AB=(x-3)cm, BC=(x+4)cm and AC=(x+6)cm`
(ii) `AB=xcm, BC=(4x+4)cm and AC=(4x+5)cm`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the Pythagorean theorem, which states that in a right triangle, the square of the length of the hypotenuse (AC) is equal to the sum of the squares of the lengths of the other two sides (AB and BC). ### Part (i): Given AB = (x - 3) cm, BC = (x + 4) cm, AC = (x + 6) cm 1. **Set up the equation using the Pythagorean theorem**: \[ AB^2 + BC^2 = AC^2 \] Substituting the values: \[ (x - 3)^2 + (x + 4)^2 = (x + 6)^2 \] 2. **Expand each term**: \[ (x - 3)^2 = x^2 - 6x + 9 \] \[ (x + 4)^2 = x^2 + 8x + 16 \] \[ (x + 6)^2 = x^2 + 12x + 36 \] Now substitute these expansions into the equation: \[ (x^2 - 6x + 9) + (x^2 + 8x + 16) = (x^2 + 12x + 36) \] 3. **Combine like terms**: \[ 2x^2 + 2x + 25 = x^2 + 12x + 36 \] 4. **Rearrange the equation**: \[ 2x^2 + 2x + 25 - x^2 - 12x - 36 = 0 \] Simplifying gives: \[ x^2 - 10x - 11 = 0 \] 5. **Factor the quadratic equation**: \[ (x - 11)(x + 1) = 0 \] This gives us two solutions: \[ x = 11 \quad \text{or} \quad x = -1 \] Since lengths cannot be negative, we take \( x = 11 \). 6. **Calculate the lengths of the sides**: \[ AB = x - 3 = 11 - 3 = 8 \text{ cm} \] \[ BC = x + 4 = 11 + 4 = 15 \text{ cm} \] \[ AC = x + 6 = 11 + 6 = 17 \text{ cm} \] ### Final Answer for Part (i): - \( AB = 8 \text{ cm} \) - \( BC = 15 \text{ cm} \) - \( AC = 17 \text{ cm} \) --- ### Part (ii): Given AB = x cm, BC = (4x + 4) cm, AC = (4x + 5) cm 1. **Set up the equation using the Pythagorean theorem**: \[ AB^2 + BC^2 = AC^2 \] Substituting the values: \[ x^2 + (4x + 4)^2 = (4x + 5)^2 \] 2. **Expand each term**: \[ (4x + 4)^2 = 16x^2 + 32x + 16 \] \[ (4x + 5)^2 = 16x^2 + 40x + 25 \] Now substitute these expansions into the equation: \[ x^2 + (16x^2 + 32x + 16) = (16x^2 + 40x + 25) \] 3. **Combine like terms**: \[ 17x^2 + 32x + 16 = 16x^2 + 40x + 25 \] 4. **Rearrange the equation**: \[ 17x^2 + 32x + 16 - 16x^2 - 40x - 25 = 0 \] Simplifying gives: \[ x^2 - 8x - 9 = 0 \] 5. **Factor the quadratic equation**: \[ (x - 9)(x + 1) = 0 \] This gives us two solutions: \[ x = 9 \quad \text{or} \quad x = -1 \] Since lengths cannot be negative, we take \( x = 9 \). 6. **Calculate the lengths of the sides**: \[ AB = x = 9 \text{ cm} \] \[ BC = 4x + 4 = 4(9) + 4 = 36 + 4 = 40 \text{ cm} \] \[ AC = 4x + 5 = 4(9) + 5 = 36 + 5 = 41 \text{ cm} \] ### Final Answer for Part (ii): - \( AB = 9 \text{ cm} \) - \( BC = 40 \text{ cm} \) - \( AC = 41 \text{ cm} \) ---
Promotional Banner

Topper's Solved these Questions

  • PYTHAGORAS THEOREM

    ICSE|Exercise 4 MARKS QUESTIONS|9 Videos
  • PYTHAGORAS THEORAM

    ICSE|Exercise QUESTIONS|9 Videos
  • RATIONAL AND IRRATIONAL NUMBERS

    ICSE|Exercise EXERCISE 1 (D)|21 Videos

Similar Questions

Explore conceptually related problems

In triangleABC, /_B=90^(@) . Find the sides of the triangle if: AB=(x-3) cm, BC=(x+4) cm" and "AC=(x+6) cm .

In DeltaABC, AB=AC=x, BC=10cm and the area of triangle is 60 cm^(2) . Find x.

Construct a triangle ABC given that : AB = 5 cm, BC = 4 cm and CA = 6 cm

Construct a Delta ABC such AB=5 cm, BC = 4.6 cm and AC = 4.3 cm

In a right triangle ABC , angle B=90^(@) (a) If AB=6cm,BC=8cm, find AC (b) If AC=13cm,BC=5cm, find AB.

Find the area of a quadrilateral ABCD in which AB=3 cm, BC=4 cm, CD=4 cm, DA=5 cm and AC=5 cm

In DeltaABC,D and E are points on the sides AB and AC respectively. Find whether DE||BC if (i) AD= 3cm , BD = 4.5cm, AE = 4cm, AC= 10cm (ii) AB=7 cm , BD = 4.5cm, AE = 3.5 cm, CE= 5.6cm.

Construct a rectangle ABCD, if: (i) AB=4.5 cm and BC=5.5 cm. (ii) BC=6.1 cm and CD=6.8 cm. (iii) AB=5.0 cm and diagonal AC=6.7 cm.

Find the perimeters of : A triangle ABC having sides of lengths , AB=7 cm , BC =5 cm , AC = 8.5 cm

Construct Delta ABC with AB = 4.5 cm, BC = 7 cm and CA = 6 cm.