Home
Class 12
MATHS
Prove that: cos^(2)pi/8 + cos^(2)(3pi)...

Prove that:
`cos^(2)pi/8 + cos^(2)(3pi)/(8) + cos^(2)(5pi)/(8)+ cos^(2)(7pi)/(8)=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cos^(4)(pi)/(8)+cos^(4)(3 pi)/(8)+cos^(4)(5 pi)/(8)+cos^(4)(7 pi)/(8)=(3)/(2)

Prove that cos^(4)pi/8+cos^(4)(3pi)/(8)+cos^(4)(5pi)/8+cos^(4)(7pi)/8=3/2

cos^(2)""(pi)/(16)+cos^(2)""(3pi)/(16)+cos^(2)""(5pi)/(16)+cos^(2)""(7pi)/(16)=?

(cos^(2)pi)/(8)+(sin^(2)(3 pi))/(8)+(sin^(2)(5 pi))/(8_(sin)^(2))(7 pi)/(8)=2

Prove that: sin^(2)pi/8+sin^(2)(3pi)/(8)+sin^(2)(5pi)/8+sin^(2)(7pi)/8=2

Prove that (1 + cos(pi/8))(1 + cos(3pi/8))(1 + cos(5pi/8))(1 + cos(7pi/8)) = 1/8

cos ((pi) / (8)) cos ((3 pi) / (8)) cos ((5 pi) / (8)) cos ((7 pi) / (8)) =