Home
Class 12
MATHS
Let alpha, beta be ral roots of the qua...

Let `alpha, beta ` be ral roots of the quadratic equation`x ^(2)+kx+ (k^(2) +2k-4) =0,` then the minimum value of `alpha ^(z)+beta ^(z)` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha, beta be real roots of the quadratic equatin x ^(2) +kx+ (k^(2) +2k -4)=0, then the maximum value of (alpha ^(2) +beta ^(2)) is equal to :

If alpha & beta are the roots of the quadratic equation x^(2)-(k-2)x-k+1=0 , then minimum value of alpha^(2)+beta^(2) is

If alpha,beta are the roots of the quadratic equation x^(2)-2(1-sin2 theta)x-2cos^(2)(2 theta)=0, then the minimum value of (alpha^(2)+beta^(2)) is equal to

If alpha,beta are the roots of the quadratic equation x^(2)-2(1-sin2 theta)x-2cos^(2)(2 theta)=0, then the minimum value of (alpha^(2)+beta^(2)) is equal to

If alpha & beta are the roots of the quadratic equation x^(2)-(k-2)x-k+1=0 ,then minimum value of alpha^(2)+beta^(2) is

If alpha and beta are the roots of the quadratic equation x^(2) - 2x - 7 = 0 , find the value of alpha^(2) + beta ^(2) .

If alpha and beta are the real roots of the equation x^(2)-(k+1)x-(k+2)=0, then minimum value of alpha^(2)+beta^(2) is

Let alpha and beta be the solutions of the quadratic equation x^(2)-1154x+1=0, then the value of alpha^((1)/(4))+beta^((1)/(4)) is equal to