Home
Class 12
MATHS
A class XII student appearing for a comp...

A class XII student appearing for a competitive examination was asked to attempt the following questions
Let `veca,vecb` and `vecc` be three non zero vectors.
If `veca=hati-2hatj,vecb=2hati+hatj+3hatk` then evaluate `(2veca+vecb).[(veca+vecb)xx(veca-2vecb)]`

A

0

B

4

C

3

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \((2\vec{a} + \vec{b}) \cdot ((\vec{a} + \vec{b}) \times (\vec{a} - 2\vec{b}))\) given the vectors \(\vec{a} = \hat{i} - 2\hat{j}\) and \(\vec{b} = 2\hat{i} + \hat{j} + 3\hat{k}\). ### Step 1: Calculate \(2\vec{a} + \vec{b}\) \[ \vec{a} = \hat{i} - 2\hat{j} \\ \vec{b} = 2\hat{i} + \hat{j} + 3\hat{k} \] Calculating \(2\vec{a}\): \[ 2\vec{a} = 2(\hat{i} - 2\hat{j}) = 2\hat{i} - 4\hat{j} \] Now, adding \(\vec{b}\): \[ 2\vec{a} + \vec{b} = (2\hat{i} - 4\hat{j}) + (2\hat{i} + \hat{j} + 3\hat{k}) = (2 + 2)\hat{i} + (-4 + 1)\hat{j} + 3\hat{k} = 4\hat{i} - 3\hat{j} + 3\hat{k} \] ### Step 2: Calculate \(\vec{a} + \vec{b}\) \[ \vec{a} + \vec{b} = (\hat{i} - 2\hat{j}) + (2\hat{i} + \hat{j} + 3\hat{k}) = (1 + 2)\hat{i} + (-2 + 1)\hat{j} + 3\hat{k} = 3\hat{i} - \hat{j} + 3\hat{k} \] ### Step 3: Calculate \(\vec{a} - 2\vec{b}\) Calculating \(2\vec{b}\): \[ 2\vec{b} = 2(2\hat{i} + \hat{j} + 3\hat{k}) = 4\hat{i} + 2\hat{j} + 6\hat{k} \] Now, subtracting from \(\vec{a}\): \[ \vec{a} - 2\vec{b} = (\hat{i} - 2\hat{j}) - (4\hat{i} + 2\hat{j} + 6\hat{k}) = (1 - 4)\hat{i} + (-2 - 2)\hat{j} + (0 - 6)\hat{k} = -3\hat{i} - 4\hat{j} - 6\hat{k} \] ### Step 4: Calculate \((\vec{a} + \vec{b}) \times (\vec{a} - 2\vec{b})\) Using the cross product formula: \[ \vec{u} = \begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix}, \quad \vec{v} = \begin{pmatrix} -3 \\ -4 \\ -6 \end{pmatrix} \] The cross product \(\vec{u} \times \vec{v}\) is calculated using the determinant of a matrix: \[ \vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & 3 \\ -3 & -4 & -6 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} -1 & 3 \\ -4 & -6 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 3 \\ -3 & -6 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & -1 \\ -3 & -4 \end{vmatrix} \] Calculating each determinant: 1. \(\begin{vmatrix} -1 & 3 \\ -4 & -6 \end{vmatrix} = (-1)(-6) - (3)(-4) = 6 + 12 = 18\) 2. \(\begin{vmatrix} 3 & 3 \\ -3 & -6 \end{vmatrix} = (3)(-6) - (3)(-3) = -18 + 9 = -9\) 3. \(\begin{vmatrix} 3 & -1 \\ -3 & -4 \end{vmatrix} = (3)(-4) - (-1)(-3) = -12 - 3 = -15\) Putting it all together: \[ \vec{u} \times \vec{v} = 18\hat{i} + 9\hat{j} - 15\hat{k} = 18\hat{i} + 9\hat{j} - 15\hat{k} \] ### Step 5: Calculate \((2\vec{a} + \vec{b}) \cdot ((\vec{a} + \vec{b}) \times (\vec{a} - 2\vec{b}))\) Now we need to calculate the dot product: \[ (4\hat{i} - 3\hat{j} + 3\hat{k}) \cdot (18\hat{i} + 9\hat{j} - 15\hat{k}) = 4 \cdot 18 + (-3) \cdot 9 + 3 \cdot (-15) \] Calculating: \[ = 72 - 27 - 45 = 72 - 72 = 0 \] ### Final Answer Thus, the value of \((2\vec{a} + \vec{b}) \cdot ((\vec{a} + \vec{b}) \times (\vec{a} - 2\vec{b}))\) is \(\boxed{0}\).
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    CBSE MODEL PAPER|Exercise QUESTIONS|9 Videos
  • Additional Practice Questions

    CBSE MODEL PAPER|Exercise Question|87 Videos
  • SAMPLE QUESTION PAPER ( MATHEMATICS )

    CBSE MODEL PAPER|Exercise QUESTION|60 Videos

Similar Questions

Explore conceptually related problems

A class XII student appearing for a competitive examination was asked to attempt the following questions Let veca,vecb and vecc be three non zero vectors. If veca and ? vecb are such that |veca+ vecb | = |veca − vecb| then

A class XII student appearing for a competitive examination was asked to attempt the following questions Let veca,vecb and vecc be three non zero vectors. Let veca,vecb and vecc be unit vectors such that veca.vecb=veca.vecc=0 and angle between vecb and vecc is pi/6 then veca=

If veca = hati+hatj-2hatk, vecb=2hati-3hatj+hatk the value of (2veca+3vecb) . (2vecbxx3veca) is :

If veca and vecb are vectors in space given by veca=(hati-2hatj)/(sqrt(5)) vecb=(2hati+hatj+3hatk)/(sqrt(14)) then the value of (2veca+vecb).[(vecaxxvecb)xx(veca-2vecb)] , is

If veca = 2hati -3hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

For vectors vecA=3hati-4hatj+5hatk and vecB=hati-hatj-hatk , calculate the value of (vecA+vecB)xx(vecA-vecB)

If veca=(3hati-hatj)/(sqrt(10)) and vecb=(hati+3hatj+hatk)/(sqrt(11)), then the value of (2veca+vecb)".[(veca xx vecb)xx(veca-3vecb)]

If vecA=9hati-7hatj+5hatk and vecB=3hati-2hatj-6hatk then the value of (vecA+vecB).(vecA-vecB) is

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .