Home
Class 10
PHYSICS
The below picture are few natural exampl...

The below picture are few natural examples of parabolic shape which is represented by a quadratic polynomial. A parabolic arch is an arch in the shape of a parabola. In structures, their curve represents an efficient method of load, and so can be found in bridges and in architecture in a variety of forms.

If the roots of the quadratic polynomial are equal, where the discriminant `D = b^2 - 4ac,` then

A

`D gt 0 `

B

`D lt 0`

C

`D ge 0`

D

`D = 0`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    CBSE MODEL PAPER|Exercise POLYNOMIALS (CASE STUDY 2)|5 Videos
  • QUESTION BANK 2021

    CBSE MODEL PAPER|Exercise POLYNOMIALS (CASE STUDY 3)|5 Videos
  • QUESTION BANK 2021

    CBSE MODEL PAPER|Exercise REAL NUMBERS - CASE STUDY (CASE STUDY 3)|5 Videos
  • PRACTICE PAPER 2022

    CBSE MODEL PAPER|Exercise Multiple Choice Questions|60 Videos
  • SAMPLE PAPER (MATHEMATICS STANDARD)

    CBSE MODEL PAPER|Exercise PART - B|16 Videos

Similar Questions

Explore conceptually related problems

The below picture are few natural examples of parabolic shape which is represented by a quadratic polynomial. A parabolic arch is an arch in the shape of a parabola. In structures, their curve represents an efficient method of load, and so can be found in bridges and in architecture in a variety of forms. The graph of x^2+1=0

The below pictures are few natural examples of parabolic shape which is represented by a quadratic polynomial. A parabolic arc is an arc in the shape of a parabola. In structures, their curve represents an efficient method of load, and so can be found in bridges and the architechture in a variety of forms. If the zeroes of the quadratic polynomial are equal, where the discriminant D=b^(2)-4ac , then

The below pictures are few natural examples of parabolic shape which is represented by a quadratic polynomial. A parabolic arc is an arc in the shape of a parabola. In structures, their curve represents an efficient method of load, and so can be found in bridges and the architecture in a variety of forms The graph of x^(2)+1

The below picture are few natural examples of parabolic shape which is represented by a quadratic polynomial. A parabolic arch is an arch in the shape of a parabola. In structures, their curve represents an efficient method of load, and so can be found in bridges and in architecture in a variety of forms. If a and 1/a are the zeroes of the qudratic polynomial 2x^2 - x +8k then k is

The below picture are few natural examples of parabolic shape which is represented by a quadratic polynomial. A parabolic arch is an arch in the shape of a parabola. In structures, their curve represents an efficient method of load, and so can be found in bridges and in architecture in a variety of forms. In the standard form of quadratic polynomial, ax^(2)+bx+c a,b and c are

The below pictures are few natural examples of parabolic shape which is represented by a quadratic polynomial. A parabolic arc is an arc in the shape of a parabola. In structures, their curve represents an efficient method of load, and so can be found in bridges and the architechture in a variety of forms. In the standard form of quadratic polynomial ax^(2)+bx+c where a,b and c are

The below pictures are few natural examples of parabolic shape which is represented by a quadratic polynomial. A parabolic arc is an arc in the shape of a parabola. In structures, their curve represents an efficient method of load, and so can be found in bridges and the architecture in a variety of forms If alpha and 1/(alpha) are the zeroes of the quadratic polynomial 2x^(2)-x+8k then k is

The below picture are few natural examples of parabolic shape which is represented by a quadratic polynomial. A parabolic arch is an arch in the shape of a parabola. In structures, their curve represents an efficient method of load, and so can be found in bridges and in architecture in a variety of forms. If the sum of the roots is -p and product of the roots is -1/p , then the quadratic polynomial is

The below pictures are few natural examples of parabolic shape which is represented by a quadratic polynomial. A parabolic arc is an arc in the shape of a parabola. In structures, their curve represents an efficient method of load, and so can be found in bridges and the architecture in a variety of forms. If the sum of the roots is -p and the product of the roots is (-1)/p then the quadratic polynomial is

Sign of a quadratic polynomial