Home
Class 12
MATHS
If n=5, then (^nC(0))^(2)+(^nC(1))^(2)+(...

If `n=5`, then `(^nC_(0))^(2)+(^nC_(1))^(2)+(^nC_(2))^(2)+....+(^nC_(5))^(2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

(nC_(0))^(2)+(nC_(1))^(2)+(nC_(2))^(2)+......+(nC_(n))^(2)

(nC_(0))^(2)-(nC_(1))^(2)+(nC_(2))^(2)+....+(-1)^(n)(nC_(n))^(2)

The value of (nC_(0))/(n)+(nC_(1))/(n+1)+(nC_(2))/(n+2)+......+(nC_(n))/(2n) is equal to

The value of (^nC_(0))/(n)+(^nC_(1))/(n+1)+(^nC_(2))/(n+2)+....+(n)/(2n) is equal to a.int_(0)^(1)x^(n-1)(1-x)^(n)dxbint_(1)^(2)x^(n)(x-1)^(n-1)dxc*int_(1)^(2)x^(n-1)(1+x)^(n)dx d.int_(0)^(1)(1-x)^(n-1)dx

sum_(r=0)^(n)(-2)^(r)*(nC_(r))/((r+2)C_(r)) is equal to

sum_(n=6)^(100)(*^(n+1)C_(4))/(^nC_(5)*n-1)C_(5) is equal to

sum_(n=6)^(100)(*^(n+1)C_(4))/(^nC_(5)*n-1)C_(5) is equal to

4^(n)C_(0)+4^(2)(nC_(1))/(3)+4^(3)(nC_(2))/(3)+4^(4)(nC_(3))/(4)+....+4^(n+1)(nC_(n))/(n+1) is equal to

2nC_(n+1)+2*2nC_(n)+2nC_(n-1) is equals to: