Home
Class 12
MATHS
The probability that sin^(-1)(sinx)+cos^...

The probability that `sin^(-1)(sinx)+cos^(-1)(cosy)` is an integer `x,y in {1,2,3,4}` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The probability that sin^(-1)(sin x)+cos^(-1)(cos y) is an integer x,y in(1,2,3,4), is

y=(1)/(3(1+sin x)-cos^(2)x)

Find the area bounded by the curves y=(sin^(-1)(sin x)+cos^(-1)(cos x)) and y=(sin^(-1)(sin x)+cos^(-1)(cos x))^(2) for 0<=x<=2 pi

(sin^(3)x)/(1 + cosx) + (cos^(3)x)/(1 - sinx) =

Find the domain of y=sin^(-1)[(4)/(3+2cos x)]

If sin^(-1)x+sin^(-1)y=(2pi)/3 , then cos^(-1)x+cos^(-1)y is equal to

If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 x cos^-1 y is equal to