Home
Class 11
MATHS
The integral int(1+x-1/x)e^(x+1/x)dx is...

The integral `int(1+x-1/x)e^(x+1/x)dx` is equal to (1) `(x-1)e^(x+1/x)+C` (2) `x e^(x+1/x)+C` (3) `(x+1)e^(x+1/x)+C` (4) `-x e^(x+1/x)+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int(1+x-(1)/(x))e^(x+(1)/(x))dx is equal to (1)(x-1)e^(x+(1)/(x))+C(2)xe^(x+(1)/(x))+C(3)(x+1)e^(x+(1)/(x))+C(2)-xe^(x+(1)/(x))+C

int sqrt((e^(x)-1)/(e^(x)+1))dx is equal to

int(x^(e-1)+e^(x-1))/(x^(e)+e^(x)) dx is equal to

int_(1)^(e)(e^(x)(x log_(e)x+1))/(x)dx is equal to

int(1+x-x^(-1))e^(x+x^(-1))dx=

int(1+x-x^(-1))e^(x+x^(-1))dx=

int e^(x)((x-2)/((x-1)^(2)))dx is equal to (i) (e^(x))/(x-1)+C (ii) (e^(x))/((x-1)^(2))+C( iii) (2e^(x))/((x-1)^(2))+C( iv )(e^(x)-1)/(x-1)+C

Choose the correct answers int(dx)/(e^x+e^(-x)) is equal to (A) tan^(-1)(e^x)+C (B) tan^(-1)(e^(-x))+C (C) log(e^x-e^(-x))+C (D) log(e^x+e^(-x))+C

int_(-1)^(1)(e^(x)+e^(-x))/(2(1+e^(2x)))dx is equal to