Home
Class 11
MATHS
If bar(a)=bar(i)+bar(j)+bar(k),bar(b)=ba...

If `bar(a)=bar(i)+bar(j)+bar(k)`,`bar(b)=bar(i)+2bar(j)+3bar(k)` then a unit vector perpendicular to both vectors `(bar(a)+bar(b))` and `(bar(a)-bar(b))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The unit vector perpendicular to both of the vectors 2bar(i)-bar(j)+bar(k) and 3bar(i)+4bar(j)-bar(k) is.

If bar(a)=2bar(i)-3bar(j)+5bar(k),bar(b)=-bar(i)+4bar(j)+2bar(k) then find bar(a)timesbar(b) and unit vector perpendicular to both bar(a) and bar(b) .

If bar(a)=bar(i)+2bar(j)+bar(k),bar(b)=2bar(j)+bar(k)-bar(i), then component of bar(a) perpendicular to bar(b) is

Let bar(a)=3hat i+2hat j+2hat k,bar(b)=hat i+2hat j-2hat k Then a unit vector perpendicular to both bar(a)-bar(b) and bar(a)+bar(b) is

If bar(a)=2bar(i)+bar(j)+2bar(k),bar(b)=5bar(i)-3bar(j)+bar(k), then the length of the component vector of b perpendicular to a is

Let bar(a)=3hat i+2hat j+2hat k , bar(b)=hat i+2hat j-2hat k .Then a unit vector perpendicular to both bar(a)-bar(b) and bar(a)+bar(b) is

Let bar(a)=2bar(i)+bar(j)+bar(k),bar(b)=bar(i)+2bar(j)-bar(k) and a unit vector bar(c) be coplanar.If bar(c) is perpendicular to bar(a), then bar(c) is

If bar(a)=bar(i)-2bar(j)-bar(k) , bar(b)=-2bar(j)+bar(k) are two vectors and bar(c) is a vector such that bar(c)=bar(a) times bar(b) then |bar(a)|:|bar(b)|:|bar(c)| =

If bar(P)=i+j+2k and bar(Q)=3i-2j+k ,the unit vector perpendicular to both bar(P) and bar(Q) is

If bar(a)=3bar(i)-5bar(j),bar(b)=6bar(i)+3bar(j) are two vectors and bar(c) is vector such that bar(c)=bar(a)timesbar(b) then |bar(a)|:|bar(b)|:|bar(c)|=