Home
Class 12
MATHS
f(x) = max{x/n, |sinpix|}, n in N. has m...

`f(x) = max{x/n, |sinpix|}, n in N`. has maximum points of non-differentiability for `x in (0, 4)`, Then n cannot be (A) `4` (B) `2` (C) `5` (D) `6`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = e^(-|ln x| , x in (0, oo) is discontinuous at m points and non differentiable at n points then the vlaue of m n is

If the number of points of non differentiable of f(x)=max{sin x ,cos x, 0} in (0, 2n pi) is Pn then find the value P

If sin^2x-2sinx-1=0 has exactly four different solutions in x in [0,npi] , then value/values of n is/are (n in N) 5 (b) 3 (c) 4 (d) 6

If sin^2x-2sinx-1=0 has exactly four different solutions in x in [0,npi] , then value/values of n is/are (n in N) 5 (b) 3 (c) 4 (d) 6

If sin^2x-2sinx-1=0 has exactly four different solutions in x in [0,npi] , then value/values of n is/are (n in N) 5 (b) 3 (c) 4 (d) 6

The function f(x)=max{|x|^(3),1),x>=0 and f(x)=min{|x|^(3),1),x<0 is non differentiable at n points then n=

If lim_(xto0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must be equal to 4 (b) 1 (c) 2 (d) 3

If lim_(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must be equal to 4 (b) 1 (c) 2 (d) 3

If lim_(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must be equal to 4 (b) 1 (c) 2 (d) 3

If lim_(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must be equal to (a) 4 (b) 1 (c) 2 (d) 3