Home
Class 10
MATHS
Note : log x = log10 x: log 5^23...

Note : `log x = log_10 x`: `log 5^23`

Promotional Banner

Topper's Solved these Questions

  • REAL NUMBERS

    VGS PUBLICATION-BRILLIANT|Exercise CREATIVE BITS FOR CCE MODEL EXAMINATION(MCQs)|131 Videos
  • QUADRATIC EQUATIONS (MULTIPLE CHOICE QUESTION)

    VGS PUBLICATION-BRILLIANT|Exercise QUADRATIC EQUATIONS (MULTIPLE CHOICE QUESTION)|20 Videos
  • REAL NUMBERS (MULTIPLE CHOICE QUESTION)

    VGS PUBLICATION-BRILLIANT|Exercise REAL NUMBERS (MULTIPLE CHOICE QUESTION)|22 Videos

Similar Questions

Explore conceptually related problems

Note : log x = log_10 x : log_27^25

Note : log x = log_10 x : log_58^50

Note : log x = log_10 x : log 1024

If x^(2) + y^(2)=6xy , prove that 2 log (x+ y)= log x + log y + 3 log 2

If x^2 + y^2 = 10xy , prove that 2 log (x + y) = log x + log y + 2 log 2 + log 3 .

Find the derivative of the w.r.t.x log [(sin (log x ) + x log x log (log x)]

The derivative of (log x) ^(x) w.r.t x is (log x)^(x-1) [1+ log x log (log x)] R : (d)/(dx) {f (x) ^(g(x))[g (x) (f'(x))/(f (x)) + g'(x) log (f(x) ]

If x ^( log y) = log x, then prove that (dy)/(dx) = (y)/(x) ((1- log x log y)/( (log x) ^(2)))

If y = log _(a) x + log _(x ) a + log _(x ) x + log _(a) a then (dy)/(dx) =

Find the derivative of the w.r.t.x x log x log (log x)