Home
Class 10
MATHS
logx (a/b)=…....

`log_x (a/b)`=….

A

`log_x a- log_x b`

B

`log_x a + log_x b`

C

`log_x ab`

D

None

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • REAL NUMBERS

    VGS PUBLICATION-BRILLIANT|Exercise CREATIVE BITS FOR CCE MODEL EXAMINATION(MCQs)|131 Videos
  • QUADRATIC EQUATIONS (MULTIPLE CHOICE QUESTION)

    VGS PUBLICATION-BRILLIANT|Exercise QUADRATIC EQUATIONS (MULTIPLE CHOICE QUESTION)|20 Videos
  • REAL NUMBERS (MULTIPLE CHOICE QUESTION)

    VGS PUBLICATION-BRILLIANT|Exercise REAL NUMBERS (MULTIPLE CHOICE QUESTION)|22 Videos

Similar Questions

Explore conceptually related problems

log_(b)a.log_(a)b=………….

A : (a-b)/(a)+(1)/(2)((a-b)/(a))^(2)+(1)/(3)((a-b)/(a))^(3)+....=log_(e)((a)/(b)) R : log_(e)(1-x)=-x-(x^(2))/(2)-(x^(3))/(3)-(x^(4))/(4)-....

Write the following in exponential form. log_(a)x=b

The constant c of rolle's theorem for the function f(x)="log" (x^2+ab)/((a+b)x) in [a,b] where 0 notin[a,b] is

The derivative of (log x) ^(x) w.r.t x is (log x)^(x-1) [1+ log x log (log x)] R : (d)/(dx) {f (x) ^(g(x))[g (x) (f'(x))/(f (x)) + g'(x) log (f(x) ]

Prove that log_(a)xy=log_(a)x+log_(a)y.

The solution of x log x (dy)/(dx) + y = 2 log x is

If f(x)=logx, g(x)=x^(3) then f[g(a)]+f[g(b)]=