Home
Class 8
MATHS
a^2 - b^2 = (a+b) (a - b) is a...

`a^2 - b^2 = (a+b) (a - b)` is a

A

Identity

B

Area

C

Place

D

None

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    VGS PUBLICATION-BRILLIANT|Exercise EXERCISE|168 Videos
  • AREA OF PLANE -FIGURES

    VGS PUBLICATION-BRILLIANT|Exercise EXERCISE|112 Videos

Similar Questions

Explore conceptually related problems

Simplify : a^(2)(a - b ) + b^(2) (a + b )

(a + b)^2 - (a - b)^2 =

(a - b)^2 - (a - b)^2 = ____

In a triangle ABC if (a^(2) + b^(2))/(a^(2) - b^(2)) sin (A - B) = 1 and the triangle is not right angled, then cos (A - B) =

(a - b)^2 - (a + b)^2 = ___

If 2 (a ^(2) + b ^(2)) = (a+b)^(2), then show that a =b

(a ) /( b^(2) - c^(2)) + ( c )/( b^(2) - a^(2)) = 0 then B =

a = 1, b = 2 (a - b)^2 = ____