Home
Class 8
MATHS
48a^2 + 243b^2 =...

48`a^2` + 243`b^2` = ____

A

3 (4a + 9b) (4a - 9b)

B

3 (4a + 9b)

C

(x - a) (x - b)

D

none

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • FACTORISTION

    VGS PUBLICATION-BRILLIANT|Exercise EXERCISE|182 Videos
  • EXPONENTS AND POWERS

    VGS PUBLICATION-BRILLIANT|Exercise EXERCISE|215 Videos
  • FREQUENCY DISTRIBUTION TABLES AND GRAPHS

    VGS PUBLICATION-BRILLIANT|Exercise EXERCISE|133 Videos

Similar Questions

Explore conceptually related problems

Factorise : 48a^2 - 243b^2 .

8x = (52)^2 - (48)^2 then x =____

Factorise the following expressions 48 a^(2)b - 54 a^(2) bc

solve the equations 32x^3 - 48 x^2 + 22 x -3=0 , the roots being in A.P.

If 2 (a ^(2) + b ^(2)) = (a+b)^(2), then show that a =b

Factorise of the following : 1-64a^3-12a + 48a^2 .

The value of sin ^(2) 12 ^(@) + sin ^(2) 12 ^(@) + sin ^(2) 39^(@) + sin ^(2) 48^(@) - sin ^(2) 9^(@) - sin ^(2) 18^(@) is "______"

The vlaue of sin ^(2) 12^(@) + sin ^(@) 21^(@) + sin ^(2) 39^(@) + sin ^(2) 48^(@) - sin ^(2) 9^(@) - sin ^(2) 18^(@) is "______"

Factorise each of the following (i) 8a ^(3) + b^(3) + 12a ^(2)b + 6ab ^(2) (ii) 8a ^(3) - b ^(3) -12a ^(2) b+ 6ab ^(2) (iii) 1- 64 a ^(3) -12a + 48 a ^(2) (iv) 8p^(3) - (12)/(5) p^(2) + (6)/(25) p- (1)/(125)