Home
Class 8
MATHS
Divide 30(a^2bc+ ab^2c + abc^2) by 6abc....

Divide `30(a^2bc+ ab^2c + abc^2)` by 6abc.

A

5 (a + b + c)

B

6 (a + b)

C

`x^2` - 5x + 11

D

3 (a - b)

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • FACTORISTION

    VGS PUBLICATION-BRILLIANT|Exercise EXERCISE|182 Videos
  • EXPONENTS AND POWERS

    VGS PUBLICATION-BRILLIANT|Exercise EXERCISE|215 Videos
  • FREQUENCY DISTRIBUTION TABLES AND GRAPHS

    VGS PUBLICATION-BRILLIANT|Exercise EXERCISE|133 Videos

Similar Questions

Explore conceptually related problems

Divide 25(a^(2)bc + ab^(2)c + abc^(2)) by 5 abc

abc xx a^2bc = ____

Factorise the following expressions : 3a^2bc + 6ab^2c + 9abc^2 .

Factorise the following expressions 2a^(2) bc + 4ab^(2)c + 8 abc^(2)

18a^2b^2 c/ (-6abc) = _____

Identify the like terms abc, 3a^2 , 4b^2 , -7/4 ab ,-a^2, -b^2, -4a^2 , 7abc.

Divide the given polynomial by the given monomial (2 a^(2)b^(2)c^(2) + 4 ab^(2) c^(2)) div 2 abc

Divide the given polynomial by the glven monomial : ((2//3)a^2b^2c^2 +(4//3)ab^2c^2) ÷ (1//2abc)

If in triangle ABC, a^2+2bc-(b^2+c^2)= ab sin (C/2) cos( C/2) , then cot (B+C) =

In triangle ABC, range of (a^(2)+b^(2)+c^(2))/(ab+bc+ca) is (a,b,c are sides of triangle)