Home
Class 8
MATHS
1^2+2^2+3^2+ n^2 =...

`1^2+2^2+3^2+`___ `n^2 =`_______

A

`(n^2(n+1)^2(2n+1))/6`

B

`(n(n+1)(2n+1))/6`

C

`(n(n-1))/2`

D

None

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • LINEAR EQUATIONS IN ONE VARIABLE

    VGS PUBLICATION-BRILLIANT|Exercise EXERCISE|223 Videos
  • RATIONAL NUMBER

    VGS PUBLICATION-BRILLIANT|Exercise EXERCISE|213 Videos

Similar Questions

Explore conceptually related problems

Mean of the numbers 1,2,3,…,n with respective weights 1^(2) + 1, 2^(2) + 2, 3^(2) + 3,…,n^(2)+n is

(1^(2) )/( 1) + (1^(2) + 2^(2) )/(1+2) + (1^(2) + 2^(2) + 3^(2) )/( 1+ 2+ 3)+ …. + n terms =

1^(3) + 1^(2) + 1+2^(3) + 2^(2) + 2+3^(2) + 3^(2) + 3+3… 3n terms =

With usual notation prove that 2^2.C_0 + 3^2.C_1 + 4^2.C_2 + ……+ (n+2)^2. C_n = (n^2 + 9n + 16) 2^(n-2)

If n (ne 3) is an integer and z = -1 + isqrt3 , then z^(2n) + 2^(n) , z^(n) + 2^(2n) =

S_(n) = (1+2+3+....+n)/( n) then S_(1)^(2) + S_(2)^(2) + S_(3)^(2) + ..... + S_(n)^(2) =

Using the principle of finite Mathematical Induction prove that 1^(2)+(1^(2)+2^(2))+(1^(2)+2^(2)+3^(2)) + "n terms" = (n(n+1)^(2)(n+2))/(12), AA n in N .