Home
Class 12
PHYSICS
A sphere of radius 2R and mas M has a sp...

A sphere of radius 2R and mas M has a spherical cavity of radius R as shown in the figure. Find the value of gravitational field at a point P at a distance of 6R from centre of the sphere.

Text Solution

Verified by Experts

`(41GM)/(1575 R^(2))`
Promotional Banner

Topper's Solved these Questions

  • GRAVITATION

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION -J (Aakash Challengers Questions)|6 Videos
  • GRAVITATION

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOUR SELF|33 Videos
  • GRAVITATION

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION -H (Multiple True - False Type Questions)|5 Videos
  • ELECTROSTATIC POTENTIAL AND CAPACITANCE

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - D|9 Videos
  • KINETIC THEORY

    AAKASH INSTITUTE ENGLISH|Exercise EXERCISE (ASSIGNMENT) SECTION - D Assertion - Reason Type Questions|10 Videos

Similar Questions

Explore conceptually related problems

A uniform solid of valume mass density rho and radius R is shown in figure. (a) Find the gravitational field at a point P inside the sphere at a distance r from the centre of the sphere. Represent the gravitational field vector vec(l) in terms of radius vector vec(r ) of point P. (b) Now a spherical cavity is made inside the solid sphere in such a way that the point P comes inside the cavity. The centre is at a distance a from the centre of solid sphere and point P is a distance of b from the centre of the cavity. Find the gravitational field vec(E ) at point P in vector formulationand interpret the result.

A solid sphere having radius R and uniform charge density rho has a cavity of radius R/2 as shown in figure.Find the value of |E_A /E_B|

A solid sphere of mass M and radius R has a spherical cavity of radius R/2 such that the centre of cavity is at a distance R/2 from the centre of the sphere. A point mass m is placed inside the cavity at a distance R/4 from the centre of sphere. The gravitational force on mass m is

A solid sphere of mass M and radius R has a spherical cavity of radius R/2 such that the centre of cavity is at a distance R/2 from the centre of the sphere. A point mass m is placed inside the cavity at a distanace R/4 from the centre of sphere. The gravitational force on mass m is

A solid sphere of radius R has a spherical cavity of radius r as shown in the figure. If the volume charge density sigma is uniformly distributed over the whole volume of the sphere, then electric field strength at the centre of the sphere will be

A thick shell with inner radius R and outer radius 3R has a uniform charge density sigma c//m^(3) . It has a spherical cavity of radius R as shown in the figure. The electric field at the centre of the cavity is

A hemi-spherical cavity is created in solid sphere (of radius 2R ) as shown in the figure. Then

A particle of mass m is placed at a distance of 4R from the centre of a huge uniform sphere of mass M and radius R . A spherical cavity of diameter R is made in the sphere as shown in the figure. If the gravitational interaction potential energy of the system of mass m and the remaining sphere after making the cavity is (lambdaGMm)/(28R) . Find the value of lambda

A sphare of mass M and radiusR_(2) has a concentric cavity of radius R_(1) as shown in figure The force F exerted by the sphere on a particle of mass m located at a distance r from the centre of sphere veries as (0 lerleoo) .

A solid of radius 'R' is uniformly charged with charge density rho in its volume. A spherical cavity of radius R/2 is made in the sphere as shown in the figure. Find the electric potential at the centre of the sphere.