Home
Class 12
PHYSICS
STATEMENT - 1 : A metallic rod placed up...

STATEMENT - 1 : A metallic rod placed upon smooth surface is heated. The strain produced is ZERO.
STATEMENT - 2 : Strain is non-zero only when stress is developed in the rod.
STATEMENT - 3 : Two metallic rods of length `l_(1)` and `l_(2)` and coefficient of linear expansion `alpha_(1)` and `alpha_(2)` are heated such that the difference of their length ramains same at ALL termperatures Then `(alpha_(1))/(alpha_(2))=(l_(2))/(l_(1))`

A

TTT

B

FTF

C

FFT

D

FFF

Text Solution

AI Generated Solution

The correct Answer is:
To analyze the statements provided in the question, we will evaluate each statement step by step. ### Step 1: Evaluate Statement 1 **Statement 1:** A metallic rod placed upon a smooth surface is heated. The strain produced is ZERO. - When a metallic rod is heated, it expands. However, if the rod is placed on a smooth surface and is free to expand without any constraints (i.e., it is not clamped or fixed), there will be no stress developed in the rod. - Since stress is defined as force per unit area and there is no external force acting on the rod due to its free expansion, the stress remains zero. - According to the relationship between stress and strain (Stress = Young's Modulus × Strain), if stress is zero, then strain must also be zero. **Conclusion:** Statement 1 is TRUE. ### Step 2: Evaluate Statement 2 **Statement 2:** Strain is non-zero only when stress is developed in the rod. - Strain is defined as the deformation per unit length of a material. It is a measure of how much a material deforms under stress. - The relationship between stress and strain is given by the equation: Stress = Young's Modulus × Strain. - This means that for strain to be non-zero, there must be some stress acting on the material. If there is no stress, there cannot be any strain. **Conclusion:** Statement 2 is TRUE. ### Step 3: Evaluate Statement 3 **Statement 3:** Two metallic rods of length \( l_1 \) and \( l_2 \) and coefficients of linear expansion \( \alpha_1 \) and \( \alpha_2 \) are heated such that the difference of their lengths remains the same at ALL temperatures. Then \( \frac{\alpha_1}{\alpha_2} = \frac{l_2}{l_1} \). - When the rods are heated, their lengths will change according to the formula: \[ \Delta L_1 = \alpha_1 l_1 \Delta T \] \[ \Delta L_2 = \alpha_2 l_2 \Delta T \] - The problem states that the difference in lengths remains constant. Therefore: \[ \Delta L_2 - \Delta L_1 = \text{constant} \] - This implies: \[ \alpha_2 l_2 \Delta T - \alpha_1 l_1 \Delta T = \text{constant} \] - Dividing through by \( \Delta T \) (assuming \( \Delta T \) is not zero), we have: \[ \alpha_2 l_2 - \alpha_1 l_1 = 0 \] or \[ \alpha_1 l_1 = \alpha_2 l_2 \] - Rearranging gives us: \[ \frac{\alpha_1}{\alpha_2} = \frac{l_2}{l_1} \] **Conclusion:** Statement 3 is TRUE. ### Final Conclusion All three statements are TRUE. ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MECHANICAL PROPERTIES OF SOLIDS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - I)|4 Videos
  • MECHANICAL PROPERTIES OF SOLIDS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - J)|2 Videos
  • MECHANICAL PROPERTIES OF SOLIDS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - G)|2 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|9 Videos
  • Mock test 03

    AAKASH INSTITUTE ENGLISH|Exercise EXAMPLE|44 Videos

Similar Questions

Explore conceptually related problems

Two metallic rods of length l and 3l have coefficient of linear expansion alpha and 3alpha respectively. The coefficient of linear expansion ofr their series combinations, is

Two rods of length l_(1) and l_(2) are made of material whose coefficient of linear expansion are alpha_(1) and alpha_(2) , respectively. The difference between their lengths will be independent of temperatiure if l_(1)//l_(2) is to

The length of two metallic rods at temperatures theta are L_(A) and L_(B) and their linear coefficient of expansion are alpha_(A) and alpha_(B) respectively. If the difference in their lengths is to remian constant at any temperature then

There are two rods of length l_1 and l_2 and coefficient of linear expansions are alpha_1 and alpha_2 respectively. Find equivalent coefficient of thermal expansion for their combination in series.

STATEMENT - 1 : When a rod lying freely is heated, no thermal stress is developed in it. and STATEMENT - 2 : On heating, the length of the rod increase.

Two different wires having lengths L_(1) and L_(2) and respective temperature coefficient of linear expansion alpha_(1) and alpha_(2) are joined end - to - end . Then the effective temperature coefficient of linear expansion is :

If two rods of length L and 2L having coefficients of linear expansion alpha and 2alpha respectively are connected so that total length becomes 3L, the average coefficient of linear expansion of the composite rod equals

If two rods of length L and 2L having coefficients of linear expansion alpha and 2alpha respectively are connected so that total length becomes 3L, the average coefficient of linear expansion of the composite rod equals

The coefficient of linear expansion of a metal rod does not depend uponthe original length of the rod

Two rods having length l_(1) and l_(2) , made of materials with the linear coefficient of expansion alpha_(1) and alpha_(2) were welded together. The equivalent coefficients of linear expansion for the obtained rod:-