Home
Class 12
PHYSICS
In the formula , p = (nRT)/(V-b) e ^(a/...

In the formula , `p = (nRT)/(V-b) e ^(a/(RTV))` find the dimensions of a and b, where p = pressure , n= number of moles , T = temperture , V = volume and R = universal gas constant .

Text Solution

Verified by Experts

The correct Answer is:
`a=[ML^5T^(-2)mu^(-1)] ; b=[M^0L^3T^0]`
Promotional Banner

Topper's Solved these Questions

  • UNITS AND MEASUREMENTS

    AAKASH INSTITUTE ENGLISH|Exercise EXERCISE|20 Videos
  • UNITS AND MEASUREMENTS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - A)|50 Videos
  • UNITS AND MEASUREMENTS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION I (Subjective)|18 Videos
  • THERMODYNAMICS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION -D) (Assertion - Reason Type Questions)|10 Videos
  • WAVE OPTICS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section-J (Aakash Challengers question))|1 Videos

Similar Questions

Explore conceptually related problems

For a moles of gas ,Van der Weals equation is (p = (a)/(V^(-2))) (V - b) = nRT ltbr. Find the dimensions of a a and b , where p = pressure of gas ,V = volume of gas and T = temperature of gas .

Find the dimensions of a in the formula (p+a/V^2)(V-b)=RT

The Van der waal's equation for n moles of a real gas is given by (P+(n^(2)a)/V^(2)) (V-nb)=nRT , where P pressure of gas, V= volume of gas, T= temperature of gas R= molar gas constant, a & b= Van der waal's constant Which of the following have the same dimensions as those of nRT.

The equation of state of a real gas is given by (P+a/V^(2)) (V-b)=RT where P, V and T are pressure, volume and temperature resperature and R is the universal gas constant. The dimensions of the constant a in the above equation is

For an ideal gas, number of moles per litre in terms of its pressure P, gas constant R and temperature T is

The van der Waal's equation of state for some gases can be expressed as : (P + (a)/( V^(2))) ( V - b) = RT Where P is the pressure , V is the molar volume , and T is the absolute temperature of the given sample of gas and a, b , and R are constants. The dimensions of a are

The van der Waal's equation of state for some gases can be expressed as : (P + (a)/( V^(2))) ( V - b) = RT Where P is the pressure , V is the molar volume , and T is the absolute temperature of the given sample of gas and a, b , and R are constants. Which of the following does not have the same dimensional formula as that for RT?

The vander waal's equation for a gas is (p + a/V^(2))(V - b) = nRT where p, V, R, T and n represent the Pressure, Volume, universal gas constant, absolute temperature and number of moles of a gas respectively, where a and b are constants. The ratio b/a will have the following dimensional formula

If the equation of state of a gas is expressed as (P + a/(V^2)) (V - b) = RT where P is the pressure, V is the volume and T the absolute temperature and a, b , R are constants, then find the dimensions of 'a' and 'b' ?

The van der Waal's equation of state for some gases can be expressed as : (P + (a)/( V^(2))) ( V - b) = RT Where P is the pressure , V is the molar volume , and T is the absolute temperature of the given sample of gas and a, b , and R are constants. In the above problem , the dimensional formula for RT is same as that of