Home
Class 12
MATHS
Prove that 1+(1)/(sqrt2)+(1)/(sqrt3)+......

Prove that `1+(1)/(sqrt2)+(1)/(sqrt3)+....+(1)/(sqrtn) ge sqrtn, AA n in N`

Text Solution

Verified by Experts

For n=1, so LHS=RHS ….(i)
Assume the result for n=k
`i.e. 1+(1)/(sqrt2)+(1)/(sqrt3)+.....+(1)/(sqrtk) ge sqrtk ....(ii)`
For n=k+1
LHS=`1+(1)/(sqrt2)+..+(1)/(sqrtk)+(1)/(sqrt(k+1))`
`ge sqrtk+(1)/(sqrt(k+1))" "["using (ii)"]`
`gt sqrtk+(1)/(sqrt(k+1)+sqrtk)"Note"`
`=sqrtk+sqrt((k+1))-sqrtk=sqrt((k+1))`
i.e. the result is true for n=k+1
Hence, by induction, the result is true `AA n in N`.
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL

    AAKASH INSTITUTE ENGLISH|Exercise Example|11 Videos
  • PRINCIPLE OF MATHEMATICAL

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|9 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos
  • PROBABILITY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION-J (aakash challengers questions)|11 Videos

Similar Questions

Explore conceptually related problems

Prove that : (1)/(sqrt(2)+1)+ (1)/(sqrt(3)+sqrt(2))+ (1)/(2+sqrt(3))=1

Statement-1: For every natural number n ge 2, (1)/(sqrt1)+(1)/(sqrt2)+…..(1)/(sqrtn) gt sqrtn Statement-2: For every natural number n ge 2, sqrt(n(n+1) lt n+1

Statement-1: For every natural number nge2 , (1)/(sqrt(1))+(1)/(sqrt(2))+(1)/(sqrt(3))+...+(1)/(sqrt(n))gtsqrt(n) Statement-2: For every natural number nge2, sqrt(n(n+1))ltn+1

किसी घनात्मक पूर्णांक n के लिए यदि, (1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6)) +(1)/(sqrt(6)+sqrt(7)) +..... + (1)/(sqrt(n)+sqrt(n+1))=5 है तो n का मान क्या होगा?

The value of : lim_(ntooo)((1)/(sqrtn sqrt(n+1))+(1)/(sqrtn sqrt(n+2))+ (1)/(sqrtn sqrt(n +3)) + ...... +(1)/(sqrtn sqrt(2n))) is:

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Prove that cot 7 ""(1^(@))/(2) = sqrt2 + sqrt3 + sqrt4 + sqrt6 = (sqrt3 + sqrt2) (sqrt2 +1 ).

Prove that tan 7 (1^(@))/(2) = sqrt2 - sqrt3 -sqrt4 + sqrt6 = (sqrt3 - sqrt2) (sqrt2 -1).

The sum of the series (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+ . . . . .+(1)/(sqrt(n^(2)-1)+sqrt(n^(2))) equals

For all n in N, 1 + 1/(sqrt(2))+1/(sqrt(3))+1/(sqrt(4))++1/(sqrt(n))