Home
Class 12
MATHS
For all n( gt 1) in N, by using mathemat...

For all `n( gt 1) in N`, by using mathematical induction or otherwise `1+(1)/(2)+(1)/(3)+....+(1)/(n)` in its lowest form is

A

Odd integer

B

Even integer

C

`("Odd integer")/("Even integer")`

D

`("Even integer")/("Odd integer")`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL

    AAKASH INSTITUTE ENGLISH|Exercise Section-C(Linked Comprehension Type Questions)|6 Videos
  • PRINCIPLE OF MATHEMATICAL

    AAKASH INSTITUTE ENGLISH|Exercise Section-D:(Assertion-Reason Type Questions)|11 Videos
  • PRINCIPLE OF MATHEMATICAL

    AAKASH INSTITUTE ENGLISH|Exercise Assignmenet ((Section-A(Objective Type Questions (One option is correct))|11 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos
  • PROBABILITY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION-J (aakash challengers questions)|11 Videos

Similar Questions

Explore conceptually related problems

Using mathematical induction, prove the following: 1+2+3+...+n< (2n+1)^2 AA n in N

Using mathematical induction prove that : d/(dx)(x^n)=n x^(n-1) for all n in NN .

Using mathematical induction prove that 1/(n+1)+1/(n+2)+……+1/(2)gt13/24AAn in N and n gt1

Using mathematical induction , to prove that 7^(2n)+2^(3n-3). 3^(n-1) is divisible by 25 , for al n in N

Using mathematical induction , show that n(n+1)(n+5) is a multiple of 3 .

Using mathematical induction prove that d/(dx)(x^n)=n x^(n-1) for all positive integers n.

Using mathematical induction, to prove that 1*1!+2*2!+3.3!+ . . . .+n*n! =(n+1)!-1 , for all n in N

Using principle of mathematical induction, prove that 1 + 3 + 3^(2) + … 3^(n-1) = (3^(n) - 1)/(2)

By using principle of mathematical induction, prove that 2+4+6+….2n=n(n+1), n in N

Using the principle of mathematical induction , prove that for n in N , (1)/(n+1) + (1)/(n+2) + (1)/(n+3) + "……." + (1)/(3n+1) gt 1 .

AAKASH INSTITUTE ENGLISH-PRINCIPLE OF MATHEMATICAL -Section-B((Objective Type Questions (One option is correct))
  1. If P(n) be the statement "10n+3 is a prime number", then prove that P(...

    Text Solution

    |

  2. (x^(n)+y^(n)) is divisible by (x+y) is true when n in NN is of the for...

    Text Solution

    |

  3. The statement 2^(n) ge n^(2) (where n in N) is true for

    Text Solution

    |

  4. Choose the statement which is correct for all n in N

    Text Solution

    |

  5. n(n+1)(n+2) is divisible by k for AA n in N. The largest k is

    Text Solution

    |

  6. Mathematical induction is a tool or technique which is used to prove a...

    Text Solution

    |

  7. For each n in N, 3^(2n)-1 is divisible by

    Text Solution

    |

  8. For each n in N, n(n+1) (2n+1) is divisible by

    Text Solution

    |

  9. The statement n! gt 2^(n-1), n in N is true for

    Text Solution

    |

  10. For all n in N, 3.5^(2n+1) + 2^(3n+1) is divisible by: (i) 17 (ii...

    Text Solution

    |

  11. 3.6+6.9+9.12+....+3n(3n+3)=

    Text Solution

    |

  12. Choose the proposition among the following that is not true for all n ...

    Text Solution

    |

  13. Prove the following by the principle of mathematical induction: 7+7...

    Text Solution

    |

  14. Choose the proposition among the following that is not true for n=1 bu...

    Text Solution

    |

  15. Find the value of 1 xx 1!+2 xx 2!+3 xx 3!+........+n xx n!

    Text Solution

    |

  16. Choose the proposition that is not true for n gt 1 (n in N).

    Text Solution

    |

  17. Which of the following is true for n in N?

    Text Solution

    |

  18. For all n( gt 1) in N, by using mathematical induction or otherwise 1+...

    Text Solution

    |

  19. The sum of the square of three consecutive odd number increased by 1 i...

    Text Solution

    |

  20. Choose the proposition among the following that is true for all n in N...

    Text Solution

    |