Home
Class 12
MATHS
Statement-1: cos10^(@)+cos20^(@)+…..+cos...

Statement-1: `cos10^(@)+cos20^(@)+…..+cos170^(@)=0`
Statement-2: `cos alpha+cos(alpha+beta)+....+cos(alpha+(n-1)beta)=(cos(alpha+((n-1)beta)/(2))sin((nbeta)/(2)))/(sin((beta)/(2))), beta ne 2npi.`

A

statement 1 is true , statement 2 is false.

B

statement 1 is false, statement 2 is true.

C

statement 1 is true , statement 2 is true and statement 2 is correct explaination of statement 1.

D

statement 1 is true , statement 2 is true but statement 2 is not correct explaination of statement 1.

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL

    AAKASH INSTITUTE ENGLISH|Exercise Section-C(Linked Comprehension Type Questions)|6 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos
  • PROBABILITY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION-J (aakash challengers questions)|11 Videos

Similar Questions

Explore conceptually related problems

If cos(alpha+beta)=0 then sin(alpha+2beta)=

Prove that for all ninN Cosalpha+cos(alpha+beta)+cos(alpha+2beta)+ . . . +cos[alpha+(n-1)beta] = (cos[alpha+((n-1)/(2))beta]"sin"((nbeta)/(2)))/("sin"(beta)/(2))

Show that cos ^2 alpha + cos^2 (alpha +Beta) - 2 cos alpha cos betacos (alpha+ beta) =sin^2 beta

Sum the series cosalpha+^nC_1 cos(alpha+beta)+^nC_2 cos (alpha+2beta)+…+cos(alpha+nbeta)

Prove that : (cos alpha + cos beta)^2 + (sin alpha + sin beta)^2 = 4 cos^2 ((alpha-beta)/(2))

f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta cos(alpha+beta) is

Prove that: cos2alpha\ cos2beta+sin^2(alpha-beta)-sin^2(alpha+beta)=cos2(alpha+beta) .

Prove that : cos^2alpha+cos^2(alpha+beta)-2cosalphacosbetacos(alpha+beta)=sin^2beta

If x =cos alpha+cos beta-cos(alpha+beta) and y=4 sin.(alpha)/(2)sin.(beta)/(2)cos.((alpha+beta)/(2)) , then (x-y) equals

The expression cos^2(alpha+beta)+cos^2(alpha-beta)-cos2alphacos2beta is