Home
Class 12
MATHS
Statement-1: 1^(2)+2^(2)+....+n^(2)=(n(n...

Statement-1: `1^(2)+2^(2)+....+n^(2)=(n(n+1)(2n+1))/(6)"for all "n in N`
Statement-2: `1+2+3....+n=(n(n+1))/(2),"for all"n in N`

A

statement 1 is true, statement 2 is false.

B

statement 1 is false, statement 2 is true.

C

statement 1 is true, statement 2 is true but statement 2 is not correct explaination of statement 1.

D

statement 1 is true, statement 2 is true and statement 2 is correct explaination of statement 1.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the Principle of Mathematical Induction to prove both statements. ### Step 1: Proving Statement 1 **Statement 1:** \( 1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6} \) for all \( n \in \mathbb{N} \). **Base Case:** For \( n = 1 \): \[ 1^2 = 1 \] The right side becomes: \[ \frac{1(1+1)(2 \cdot 1 + 1)}{6} = \frac{1 \cdot 2 \cdot 3}{6} = 1 \] Both sides are equal, so the base case holds. **Inductive Step:** Assume true for \( n = k \): \[ 1^2 + 2^2 + \ldots + k^2 = \frac{k(k+1)(2k+1)}{6} \] Now we need to prove it for \( n = k + 1 \): \[ 1^2 + 2^2 + \ldots + k^2 + (k+1)^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \] Combine the terms: \[ = \frac{k(k+1)(2k+1)}{6} + \frac{6(k+1)^2}{6} = \frac{k(k+1)(2k+1) + 6(k+1)^2}{6} \] Factor out \( (k+1) \): \[ = \frac{(k+1)(k(2k+1) + 6(k+1))}{6} \] Simplifying the expression inside the parentheses: \[ = \frac{(k+1)(2k^2 + k + 6k + 6)}{6} = \frac{(k+1)(2k^2 + 7k + 6)}{6} \] Factoring \( 2k^2 + 7k + 6 \): \[ = \frac{(k+1)(k+2)(2k+3)}{6} \] Thus, we have shown: \[ 1^2 + 2^2 + \ldots + (k+1)^2 = \frac{(k+1)((k+1)+1)(2(k+1)+1)}{6} \] This completes the inductive step, proving Statement 1. ### Step 2: Proving Statement 2 **Statement 2:** \( 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} \) for all \( n \in \mathbb{N} \). **Base Case:** For \( n = 1 \): \[ 1 = \frac{1(1+1)}{2} = 1 \] Both sides are equal, so the base case holds. **Inductive Step:** Assume true for \( n = k \): \[ 1 + 2 + 3 + \ldots + k = \frac{k(k+1)}{2} \] Now we need to prove it for \( n = k + 1 \): \[ 1 + 2 + 3 + \ldots + k + (k+1) = \frac{k(k+1)}{2} + (k+1) \] Combine the terms: \[ = \frac{k(k+1) + 2(k+1)}{2} = \frac{(k+1)(k + 2)}{2} \] Thus, we have shown: \[ 1 + 2 + 3 + \ldots + (k+1) = \frac{(k+1)((k+1)+1)}{2} \] This completes the inductive step, proving Statement 2. ### Conclusion Both statements are proven true using the Principle of Mathematical Induction.
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL

    AAKASH INSTITUTE ENGLISH|Exercise Section-C(Linked Comprehension Type Questions)|6 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos
  • PROBABILITY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION-J (aakash challengers questions)|11 Videos

Similar Questions

Explore conceptually related problems

Statement-1: 1+2+3....+n=(n(n+1))/(2),"for all "n in N Statement-2: a+(a+d)+(a+2d)+....+(a+(n-1)d)=(n)/(2)[2a+(n-1)d]

Prove that: 1+2+3+....+ n<((2n+1)^2)/8 for all ""n in Ndot

Statement -1: 1.3.5 . . .(2n-1)len^(n)"for all "ninN Statement -2: GMleAM

Prove that : 1^2+2^2+3^2++n^2=(n(n+1)(2n+1))/6

Statement -1: (1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+ . . . .+(n^(2))/((2n-1)(2n+1))=(n(n+1))/(2(2n+1)) Statement -2: (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+ . . . .+(1)/((2n-1)(2n+1))=(1)/(2n+1)

Prove the following by using induction for all n in N . 1+2+3+.....+n=(n(n+1))/(2)

Statement-1: n(n+1)(n+2) is always divisible by 6 for all n in N . Statement-2: The product of any two consecutive natural number is divisible by 2.

Let S_(n) denote the sum of n terms of the series 1^(2)+3xx2^(2)+3^(2)+3xx4^(2)+5^(2)+3xx6^(2)+7^(2)+ . . . . Statement -1: If n is odd, then S_(n)=(n(n+1)(4n-1))/(6) Statement -2: If n is even, then S_(n)=(n(n+1)(4n+5))/(6)

Prove that 1+2+2^(2)+ . . .+2^(n)=2^(n+1)-1 , for all natural number n.

Statement-1 : sum_(r=0)^(n) r^(2) ""^(n)C_(r) x^(r) = n (n-1) x^(2) (1 + x)^(n-2) + nx (1 +x)^(n-1) Statement-2: sum_(r=0)^(n) r^(2) ""^(n)C_(r) = n (n-1)2^(n-2)+ n2^(n-1) .