Home
Class 12
MATHS
Statement-1: 1+2+3....+n=(n(n+1))/(2),"f...

Statement-1: `1+2+3....+n=(n(n+1))/(2),"for all "n in N`
Statement-2: `a+(a+d)+(a+2d)+....+(a+(n-1)d)=(n)/(2)[2a+(n-1)d]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will prove both statements using the principle of mathematical induction. ### Step-by-Step Solution #### Statement 1: **Claim:** \(1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}\) for all \(n \in \mathbb{N}\). **Step 1: Base Case (n = 1)** - For \(n = 1\): - LHS: \(1\) - RHS: \(\frac{1(1+1)}{2} = \frac{1 \cdot 2}{2} = 1\) - Since LHS = RHS, the base case holds. **Step 2: Inductive Hypothesis** - Assume the statement is true for \(n = k\): \[ 1 + 2 + 3 + \ldots + k = \frac{k(k+1)}{2} \] **Step 3: Inductive Step (Prove for n = k + 1)** - We need to show that: \[ 1 + 2 + 3 + \ldots + k + (k + 1) = \frac{(k + 1)(k + 2)}{2} \] - Starting from the inductive hypothesis: \[ 1 + 2 + 3 + \ldots + k + (k + 1) = \frac{k(k + 1)}{2} + (k + 1) \] - Combine the terms on the right: \[ = \frac{k(k + 1)}{2} + \frac{2(k + 1)}{2} = \frac{k(k + 1) + 2(k + 1)}{2} = \frac{(k + 1)(k + 2)}{2} \] - Thus, the statement holds for \(n = k + 1\). **Conclusion for Statement 1:** By the principle of mathematical induction, the statement is true for all \(n \in \mathbb{N}\). --- #### Statement 2: **Claim:** \(a + (a + d) + (a + 2d) + \ldots + (a + (n-1)d) = \frac{n}{2}[2a + (n-1)d]\). **Step 1: Base Case (n = 1)** - For \(n = 1\): - LHS: \(a\) - RHS: \(\frac{1}{2}[2a + (1-1)d] = \frac{1}{2}[2a + 0] = a\) - Since LHS = RHS, the base case holds. **Step 2: Inductive Hypothesis** - Assume the statement is true for \(n = k\): \[ a + (a + d) + (a + 2d) + \ldots + (a + (k-1)d) = \frac{k}{2}[2a + (k-1)d] \] **Step 3: Inductive Step (Prove for n = k + 1)** - We need to show that: \[ a + (a + d) + (a + 2d) + \ldots + (a + (k-1)d) + (a + kd) = \frac{k + 1}{2}[2a + kd] \] - Starting from the inductive hypothesis: \[ a + (a + d) + \ldots + (a + (k-1)d) + (a + kd) = \frac{k}{2}[2a + (k-1)d] + (a + kd) \] - Combine the terms: \[ = \frac{k}{2}[2a + (k-1)d] + \frac{2(a + kd)}{2} = \frac{k[2a + (k-1)d] + 2a + 2kd}{2} \] - Simplifying the right side: \[ = \frac{(k + 1)[2a + kd]}{2} \] - Thus, the statement holds for \(n = k + 1\). **Conclusion for Statement 2:** By the principle of mathematical induction, the statement is true for all \(n \in \mathbb{N}\). ---
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL

    AAKASH INSTITUTE ENGLISH|Exercise Section-C(Linked Comprehension Type Questions)|6 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos
  • PROBABILITY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION-J (aakash challengers questions)|11 Videos

Similar Questions

Explore conceptually related problems

Statement -1: 1.3.5 . . .(2n-1)len^(n)"for all "ninN Statement -2: GMleAM

Statement-1: 1^(2)+2^(2)+....+n^(2)=(n(n+1)(2n+1))/(6)"for all "n in N Statement-2: 1+2+3....+n=(n(n+1))/(2),"for all"n in N

Statement-1: The sum of n terms of the series a+(a+d)+(a+2d)+...(a+(n-1)d)=(n)/(2)[2a+(n-1)d] Statement-2:- Mathematical induction is valid only for natural numbers.

Prove the following by the principle of mathematical induction: a+(a+d)+(a+2d)++(a+(n-1)d)=n/2[2a+(n-1)d]

Statement -1: (1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+ . . . .+(n^(2))/((2n-1)(2n+1))=(n(n+1))/(2(2n+1)) Statement -2: (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+ . . . .+(1)/((2n-1)(2n+1))=(1)/(2n+1)

The arithmetic mean of 1,2,3,...n is (a) (n+1)/2 (b) (n-1)/2 (c) n/2 (d) n/2+1

The arithmetic mean of 1,2,3,...n is (a) (n+1)/2 (b) (n-1)/2 (c) n/2 (d) n/2+1

Prove the following by using the principle of mathematical induction for all n in N : 1. 2. 3 + 2. 3. 4 + .. . + n(n + 1) (n + 2)=(n(n+1)(n+2)(n+3))/4

The mean deviation of the series a , a+d , a+2d ,.....,a+2n from its mean is (a) ((n+1)d)/(2n+1) (b) (n d)/(2n+1) (c) (n(n+1)d)/(2n+1) (d) ((2n+1)d)/(n(n+1))

(d^n)/(dx^n)(logx)= ((n-1)!)/(x^n) (b) (n !)/(x^n) ((n-2)!)/(x^n) (d) (-1)^(n-1)((n-1)!)/(x^n)