Home
Class 12
MATHS
Prove that sin^(-1)(8/(17))+sin^(-1)(3/5...

Prove that `sin^(-1)(8/(17))+sin^(-1)(3/5)=cos^(-1)((36)/(85))`

Text Solution

Verified by Experts

Let `sin^(-1)(3/5)=theta`
`rArrsintheta=3/5`
`costheta=4/5`
`and sin^(-1)(8/17)=phi`
`rArrsinphi=8/17`
`rArr cosphi=15/17`

Now `cos(theta+phi)=costhetacosphi-sinthetasinphi`
`=4/5xx15/17-3/5xx8/17`
`=(60-24)/85`
`=36/85`
`rArrtheta+phi=cos^(-1)36/85`
`rArrsin^(-1)(3/5)+sin^(-1)(8/17)=cos^(-1)(36/85)`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|21 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

Prove that : sin^(-1)(8/(17))+sin^(-1)(3/5)=sin^(-1)((77)/(85))=tan^(-1)((77)/(36))

Prove that: sin^(-1)(8/17)+sin^(-1)(3/5)=tan^(-1)(77/36)

Prove that sin^(- 1)(8/17)+sin^(- 1)(3/5)=sin^(- 1)(77/85)

Prove that sin^(-1)(3/5)+cos^(-1)(15/17)=cos^(-1)(36/85)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that: cos^(-1)(12/13)+sin^(-1)(3/5)=sin^(-1)(56/65)

Prove that: cos^(-1)(12/13)+sin^(-1)(3/5)=sin^(-1)(56/65)

Prove that: tan^(-1)(63/16)=sin^(-1)(5/13)+cos^(-1)(3/5)