Home
Class 12
MATHS
Prove that: sin^(-1)(12)/(13)+cos^(-1)4/...

Prove that: `sin^(-1)(12)/(13)+cos^(-1)4/5+tan^(-1)(63)/(16)=pi`

Text Solution

Verified by Experts

Let `sin^(-1)(12/13)=alpha,cos^(-1)(4/5)=beta,tan^(-1)(63/16)=gamma`
`rArrsinalpha=12/13,cosbeta=4/5,tangamma=63/16`
`rArr tanalpha=12/5`
`and tanbeta=3/4`
Now, `alpha=tan^(-1)(12/5)&beta=tan^(-1)(3/4)`
Here, `xy=12/5xx3/4=9/5 gt1`
`:.` We cannot use `tan^(-1)x +tan^(-1)y=tan^(-1)((x+y)/(1-xy)),xygt1`
Consider, `tan(alpha+beta)=(tanalpha+tanbeta)/(1-tanalphatanbeta)`
`=(12/5+3/4)/(1-12/5xx3/4)`
`=(48+15)/(20-36)`
`=(-63)/16`
`=-tany`

`:' tanalpha =12/5&tanbeta=3/4`
`rArrtanalphatanbetagt1`
`(sinalphasinbeta)/(cosalphacosbeta)gt1`
`rArrsinalphasinbeta gt cosalphacosbeta ("as "cosalphacosbetagt0)`
`rArr cos(alpha- beta) lt0`
`pi/2ltalpha+betaltpi`
`:. tan(alpha+beta)=-tangamma`
`alpha+beta ne -gamma "as "alpha+beta in(pi/2,pi)`
`rArrtan(alpha+beta)=tan(pi-gamma)`
`rArralpha+beta=pi-gamma`
`rArralpha+gamma+beta=pi`
`rArr sin^(-1)(12/13)+cos^(-1)(4/5)+tan^(-1)(63/16)=pi`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|21 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

Show that sin^(-1)(12)/(13)+cos^(-1)4/5+tan^(-1)(63)/(16)=pi .

Prove that : sin^(-1)(5/13) +cos ^(−1)(3/5)=tan (−1)(63/16) ​

Show that sin^(-1)(5/13)+cos^(-1)(3/5)=tan^(-1)(63/16) .

Column I, Column II sin^(-1)4/5+2tan^(-1)1/3= , p. pi/6 sin^(-1)(12)/(13)+cos^(-1)4/5+tan^(-1)(63)/(16)= , q. pi/2 If A=tan^(-1)(xsqrt(3))/(2lambda-x)a n dB=tan^(-1)((2x-lambda)/(lambdasqrt(3))) then the value of a-Bi s , r. pi/4 tan^(-1)1/7+2tan^(-1)1/3= , s. pi

Prove that: cos^(-1)(12/13)+sin^(-1)(3/5)=sin^(-1)(56/65)

Prove that: cos^(-1)(12/13)+sin^(-1)(3/5)=sin^(-1)(56/65)

Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2

Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2

Prove that: cos^(-1)4/5+cos^(-1)(12)/(13)=cos^(-1)(33)/(65)

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi