Home
Class 12
MATHS
Show that sin^(-1)(2xsqrt(1-x^2))=2sin^(...

Show that `sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x`

Text Solution

Verified by Experts

L.H.S. `=sin^(-1)(2xsqrt(1-x^2))`
Let `x=sintheta`
Let x `=sintheta`
`:.L.H.S.=sin^(-1)…(2sinthetacostheta)`
`=sin^(-1)(sin2theta)`
when `1/sqrt2 le x le 1`
`rArr 1/sqrt2 le sintheta le1`
`rArr pi/4 le theta le pi/2`
`pi/2 le 2theta le pi`
`rArr -pi+pi le pi-2theta le-pi/2+pi`
`rArr 0 le pi-2theta lepi/2`
`:. sin^(-1)(sin2theta)=sin^(-1)sin(pi-2theta)`
`p[i-2theta]`
`=pi-2sin^(-1)x`
`=2(pi/2-sin^(-1)x)`
`2cos^(-1)x`
OR
Let `x=costheta`
`sin^(-1)92xsqrt(1-x^2)=sin^(-1)(2costhetasintheta)`
`=sin^(-1)(sin2theta)`
`:' 1/sqrt2 le x le 1 rArr 1/sqrt2 le costheta le 1`
`rArr 0 le theta le pi/4`
`rArr 0 le 2theta le pi/2`
`:. sin^(-1) (sin2theta)=2theta`
`:. sin^(-1)(2xsqrt(1x^2))=2theta, 0le theta le pi/4`
`rArr sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x,1/sqrt2 le x le 1`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|21 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

Show that(i) sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1

xsqrt(1+2x^(2))

Express in terms of : sin^(-1)(2xsqrt(1-x^(2))) to sin^(-1)x for 1gexgt1/(sqrt(2))

If sin^(-1)(2xsqrt(1-x^(2)))-2 sin^(-1) x=0 then x belongs to the interval

Differentiate sin^(-1)(2xsqrt(1-x^2)),

If cot(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)(xsqrt(6))),\ x!=0 , then possible value of x is

If sin ^(-1) x=(1)/(3) , then evaluate sin ^(-1) (2xsqrt(1-x^(2)))

Draw the graph of y=sin^(-1)(2xsqrt(1-x^(2)))

Prove that 2cos^(-1)x=sin^(-1)(2xsqrt(1-x^2))

Differentiate sin^(-1)(2xsqrt(1-x^2)),\ -1/(sqrt(2))