Home
Class 12
MATHS
Solve the following for x : tan^(-1)2...

Solve the following for `x :` `tan^(-1)2x+tan^(-1)3x=npi+(3pi)/4`

Text Solution

Verified by Experts

`tan^(-1)2x+tan^(-1)3x=pi/4`
`rArrtan^(-1)((2x+3x)/(1-6x^2))=pi/4 " only if "(2x)(3x) lt 1`
`rArr tan^(-1)((5x)/(1-6x^2))=pi/4 "i.e.,"6x^2 lt 1`
`(5x)/(1-6x^2)=pi/4` `:.x in((-1)/sqrt6),1/sqrt6)`
=1
`rArr 5x=1-6x^2`
`rArr 6x^2-5x-1=0`
`rArr(6x-1)(x+1)=0`
`x=-1 or x=1/6`
But x = -1 does not lie in domain of x therefore `x=1/6`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|21 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

Solve : tan^(-1)2x+tan^(-1)3x=pi/4

Solve tan^(-1)2x+tan^(-1)3x=pi/4 .

Solve : tan^(-1)2x+tan^(-1)3x=pi/4

Solve for x: tan^(-1)3x+tan^(-1)2x=pi/4

Solve for x: tan^(-1)3x+tan^(-1)2x=pi/4

Solve the following equation for x : tan^(-1)(1/4)+2tan^(-1)(1/5)+tan^(-1)(1/6)+tan^(-1)(1/x)=pi/4

Solve the following equation for x : tan^(-1)(1/4)+2tan^(-1)(1/5)+tan^(-1)(1/6)+tan^(-1)(1/x)=pi/4

Solve for x : cot^(-1)x+tan^(-1)3=(pi)/2

Solve for x : tan^(-1)x+2cot^(-1)x=(2pi)/3

Solve: tan^(-1)x+2cot^(-1)x=(2pi)/3