Home
Class 12
MATHS
The simplest form of (cos^(-1)x +cos^(-1...

The simplest form of `(cos^(-1)x +cos^(-1){x/2+1/2sqrt(3-3x^2)}),AA x in [1/2,1]` is A. Then the value of tanA is

A

`1sqrt3`

B

`sqrt3`

C

1

D

-1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to simplify the expression \( a = \cos^{-1} x + \cos^{-1} \left( \frac{x}{2} + \frac{1}{2} \sqrt{3 - 3x^2} \right) \) for \( x \in \left[ \frac{1}{2}, 1 \right] \) and then find \( \tan A \). ### Step 1: Substitute \( x = \cos \theta \) Let \( x = \cos \theta \). Then, we can rewrite the expression for \( a \): \[ a = \cos^{-1}(\cos \theta) + \cos^{-1} \left( \frac{\cos \theta}{2} + \frac{1}{2} \sqrt{3 - 3 \cos^2 \theta} \right) \] Since \( \cos^{-1}(\cos \theta) = \theta \) for \( \theta \in [0, \pi] \), we have: \[ a = \theta + \cos^{-1} \left( \frac{\cos \theta}{2} + \frac{1}{2} \sqrt{3 - 3 \cos^2 \theta} \right) \] ### Step 2: Simplify the second term Now, we simplify the term \( \frac{1}{2} \sqrt{3 - 3 \cos^2 \theta} \): \[ \sqrt{3 - 3 \cos^2 \theta} = \sqrt{3(1 - \cos^2 \theta)} = \sqrt{3 \sin^2 \theta} = \sqrt{3} \sin \theta \] Thus, we can rewrite the expression as: \[ a = \theta + \cos^{-1} \left( \frac{\cos \theta}{2} + \frac{\sqrt{3}}{2} \sin \theta \right) \] ### Step 3: Recognize the cosine of a sum We recognize that: \[ \frac{1}{2} = \cos \frac{\pi}{3} \quad \text{and} \quad \frac{\sqrt{3}}{2} = \sin \frac{\pi}{3} \] This allows us to use the cosine addition formula: \[ \cos \left( \frac{\pi}{3} - \theta \right) = \cos \frac{\pi}{3} \cos \theta + \sin \frac{\pi}{3} \sin \theta \] Thus, we can write: \[ \frac{\cos \theta}{2} + \frac{\sqrt{3}}{2} \sin \theta = \cos \left( \frac{\pi}{3} - \theta \right) \] ### Step 4: Substitute back into the expression for \( a \) Now substituting back, we have: \[ a = \theta + \cos^{-1} \left( \cos \left( \frac{\pi}{3} - \theta \right) \right) \] Since \( \cos^{-1}(\cos x) = x \) for \( x \in [0, \pi] \), we get: \[ a = \theta + \left( \frac{\pi}{3} - \theta \right) = \frac{\pi}{3} \] ### Step 5: Find \( \tan A \) Now that we have \( a = \frac{\pi}{3} \), we can find \( \tan A \): \[ \tan A = \tan \left( \frac{\pi}{3} \right) = \sqrt{3} \] ### Final Answer Thus, the value of \( \tan A \) is: \[ \boxed{\sqrt{3}} \]

To solve the problem step by step, we need to simplify the expression \( a = \cos^{-1} x + \cos^{-1} \left( \frac{x}{2} + \frac{1}{2} \sqrt{3 - 3x^2} \right) \) for \( x \in \left[ \frac{1}{2}, 1 \right] \) and then find \( \tan A \). ### Step 1: Substitute \( x = \cos \theta \) Let \( x = \cos \theta \). Then, we can rewrite the expression for \( a \): \[ a = \cos^{-1}(\cos \theta) + \cos^{-1} \left( \frac{\cos \theta}{2} + \frac{1}{2} \sqrt{3 - 3 \cos^2 \theta} \right) \] Since \( \cos^{-1}(\cos \theta) = \theta \) for \( \theta \in [0, \pi] \), we have: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|21 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

If f(x)=cos^(- 1)x+cos^(- 1){x/2+1/2sqrt(3-3x^2)} then

f(x)=cos^(-1)(x^(2)/sqrt(1+x^(2)))

Prove that: 3cos^(-1)x=cos^(-1)(4x^3-3x), x in [1/2,1]

Find the value of cos^(-1)(x)+cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

Write the simplest form : cos^(-1)(sqrt(((sqrt(1+x^2) +1)/(2sqrt(1+x^2))))

If y=cos^(-1)(2x)+2cos^(-1)sqrt(1-4x^2) ,x is [-1/2,0] , find (dy)/(dx)

If f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^(2)+x^(3))),AA 0 le x le 1 then the minimum value of f(x) is

Let f(x) = cos(tan^(-1) ( sin ( cot^(-1)x))) . The simplest form of f(x) can be written as ((x^(2) +A)/(x^(2) +B))^(1//2) . Then the value of (A + B) is ………………

Solve sin^(-1) x - cos^(-1) x = cos ^(-1)(sqrt3/2) .

Prove that : cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)