Home
Class 12
MATHS
Let f(x) = sin^(-1) 2x + cos^(-1) 2x +...

Let ` f(x) = sin^(-1) 2x + cos^(-1) 2x + sec^(-1) 2x`. Then the sum of the maximum and minimum values of f(x) is

A

`pi`

B

`2pi`

C

`3pi`

D

`pi/2`

Text Solution

Verified by Experts

The correct Answer is:
B

`f(x)=sin^(-1)2x+cos^(-1)2x+sec^(-1)2x`
`f(x)=pi/2+sec^(-1)2x`
`f(x)=pi/2+sec^(-1)2x`
Graph of `sec^(-1)2x` is as following
`(f(x))_("minimum")=pi/2+0=pi/2`
`(f(x))_("minimum")=pi/2+pi=(3pi)/2`
Sum `=pi/2+(3pi)/2`
`2pi`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|21 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=sinx+cosx+tanx+sin^(-1)x+cos^(-1)x+tan^(-1)xdot Then find the maximum and minimum values of f(x)dot

Let f(x)=sinx+cosx+tanx+sin^(-1)x+cos^(-1)x+tan^(-1)xdot Then find the maximum and minimum values of f(x)dot

Find the maximum and minimum values of f(x)=sinx+1/2cos2x in [0,\ pi/2] .

Let f(x)=x+(1)/(x),xne0. Discuss the maximum and minimum value of f(x).

Let f(x) = sin^(-1) x + cos^(-1) x ". Then " pi/2 is equal to

If f(x) = sin^6x+ cos^6 x and M_1 and M_2 , be the maximum and minimum values of f(x) for all values ofx then M_1-M_2 is equal to

Let f(x)=(1)/(pi)(sin^(-1)x+cos^(-1)x+tan^(-1)x)+((x+1))/(x^(2)+2x+10) such that the maximum value of f (x) is m, then find the value of (104 m -90) .

Find the maximum and minimum values of the function f(x) = sin x + cos 2x .

Let f(x)=(1)/(pi) (sin^(-1)x+cos^(-1)x+tan^(-1)x)+((x+1))/(x^(2)+2x+10) , if the absolute maximum value of f(x)=M , then the integral part of (1)/(M) is _____________ .

Find sum of maximum and minimum values of the function f(x) = sin^2x + 8cosx - 7