Home
Class 12
MATHS
The value of cot^(-1)(cot(-10))+cos^(-1)...

The value of `cot^(-1)(cot(-10))+cos^(-1)(cos10)` is given by `a +bpi`, a, b being rational numbers, then (b-a) equals……

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \cot^{-1}(\cot(-10)) + \cos^{-1}(\cos(10)) \) and express it in the form \( a + b\pi \), where \( a \) and \( b \) are rational numbers. Finally, we will find \( b - a \). ### Step-by-Step Solution: 1. **Evaluate \( \cot^{-1}(\cot(-10)) \)**: - We know that \( \cot(-\theta) = -\cot(\theta) \). Therefore, \( \cot(-10) = -\cot(10) \). - Using the property of inverse cotangent, \( \cot^{-1}(-x) = \pi - \cot^{-1}(x) \), we have: \[ \cot^{-1}(\cot(-10)) = \cot^{-1}(-\cot(10)) = \pi - \cot^{-1}(\cot(10)) \] 2. **Determine the range of \( \cot^{-1}(x) \)**: - The function \( \cot^{-1}(x) \) is defined such that \( \cot^{-1}(x) = x \) for \( x \) in the range \( (0, \pi) \). - Since \( 10 \) is outside this range, we need to adjust it. We can express \( 10 \) as \( 4\pi - (4\pi - 10) \). 3. **Rewrite \( \cot^{-1}(\cot(10)) \)**: - We can express \( 10 \) as \( 4\pi - (4\pi - 10) \): \[ \cot^{-1}(\cot(10)) = \cot^{-1}(\cot(4\pi - (4\pi - 10))) = \cot^{-1}(\cot(4\pi - 10)) \] 4. **Evaluate \( \cos^{-1}(\cos(10)) \)**: - Similarly, we can express \( \cos(10) \) as \( \cos(4\pi - (4\pi - 10)) \). - Since \( \cos^{-1}(x) \) is defined for \( x \) in the range \( [0, \pi] \), we have: \[ \cos^{-1}(\cos(10)) = 4\pi - 10 \] 5. **Combine the results**: - Now we can combine both parts: \[ \cot^{-1}(\cot(-10)) + \cos^{-1}(\cos(10)) = (\pi - \cot^{-1}(\cot(4\pi - 10))) + (4\pi - 10) \] - Since \( \cot^{-1}(\cot(4\pi - 10)) = 4\pi - 10 \) (as \( 4\pi - 10 \) is in the range \( (0, \pi) \)): \[ = \pi - (4\pi - 10) + (4\pi - 10) \] - This simplifies to: \[ = \pi + 10 - 4\pi + 4\pi - 10 = 8\pi - 20 \] 6. **Identify \( a \) and \( b \)**: - We can express this as: \[ 8\pi - 20 = -20 + 8\pi \] - Thus, \( a = -20 \) and \( b = 8 \). 7. **Calculate \( b - a \)**: - Finally, we find: \[ b - a = 8 - (-20) = 8 + 20 = 28 \] ### Final Answer: The value of \( b - a \) is \( 28 \).
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - H)(MULTIPLE TRUE-FALSE TYPE QUESTIONS)|1 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

The value of cos^(-1)(cos10) is

The value of cot[cos^(-1)(7/25)] is

The value of sin^(-1)sin17+cos^(-1)cos10 is equal to

The value of cot [sin^(-1){cos(tan^(-1)1)}] is

The value of cot [sin^(-1){cos(tan^(-1)1)}] is

The value of sin[cot^(-1){cos(tan^(-1) x)}] is

The value of sec ( 2 cot^(-1) 2 + cos^(-1) . 3/5) is equal to

The value of sin{cot^(-1)[cos(cot^(-1)((1)/(x)))]} is equal to (x gt0)

Find the value of, cos [tan^(-1) {sin (cot^(-1)x)}]

cos^(-1) (cos (2 cot^(-1) (sqrt2 -1))) is equal to