Home
Class 12
MATHS
If M and m are the greatest and least va...

If M and m are the greatest and least value of the function `f(x)=(cos^(-1)x)^2+(sin^(-1)x)^2` then the value of `((M+9m)/m)^3` is …..

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the greatest (M) and least (m) values of the function \( f(x) = (\cos^{-1} x)^2 + (\sin^{-1} x)^2 \) and then compute the value of \( \left( \frac{M + 9m}{m} \right)^3 \). ### Step 1: Understanding the function We know that: \[ \cos^{-1} x + \sin^{-1} x = \frac{\pi}{2} \] This means we can express \( \cos^{-1} x \) in terms of \( \sin^{-1} x \): \[ \cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x \] ### Step 2: Substitute into the function Substituting this into \( f(x) \): \[ f(x) = \left( \frac{\pi}{2} - \sin^{-1} x \right)^2 + (\sin^{-1} x)^2 \] ### Step 3: Expand the function Expanding the square: \[ f(x) = \left( \frac{\pi^2}{4} - \pi \sin^{-1} x + (\sin^{-1} x)^2 \right) + (\sin^{-1} x)^2 \] \[ = \frac{\pi^2}{4} - \pi \sin^{-1} x + 2(\sin^{-1} x)^2 \] ### Step 4: Completing the square To find the minimum and maximum values, we can complete the square for the quadratic in \( \sin^{-1} x \): \[ f(x) = \frac{\pi^2}{4} - \pi \sin^{-1} x + 2(\sin^{-1} x)^2 \] Let \( y = \sin^{-1} x \): \[ f(y) = 2y^2 - \pi y + \frac{\pi^2}{4} \] ### Step 5: Finding the vertex The vertex of a quadratic \( ay^2 + by + c \) occurs at \( y = -\frac{b}{2a} \): \[ y = -\frac{-\pi}{2 \cdot 2} = \frac{\pi}{4} \] ### Step 6: Minimum value (m) Substituting \( y = \frac{\pi}{4} \): \[ m = f\left(\frac{\pi}{4}\right) = 2\left(\frac{\pi}{4}\right)^2 - \pi\left(\frac{\pi}{4}\right) + \frac{\pi^2}{4} \] \[ = 2 \cdot \frac{\pi^2}{16} - \frac{\pi^2}{4} + \frac{\pi^2}{4} = \frac{\pi^2}{8} \] ### Step 7: Maximum value (M) The maximum value occurs at the endpoints of the range of \( \sin^{-1} x \), which is from \( -\frac{\pi}{2} \) to \( \frac{\pi}{2} \). Calculating \( f\left(-\frac{\pi}{2}\right) \): \[ M = f\left(-\frac{\pi}{2}\right) = 2\left(-\frac{\pi}{2}\right)^2 - \pi\left(-\frac{\pi}{2}\right) + \frac{\pi^2}{4} \] \[ = 2 \cdot \frac{\pi^2}{4} + \frac{\pi^2}{2} + \frac{\pi^2}{4} = \frac{5\pi^2}{4} \] ### Step 8: Calculate \( \frac{M + 9m}{m} \) Now we compute: \[ \frac{M + 9m}{m} = \frac{\frac{5\pi^2}{4} + 9 \cdot \frac{\pi^2}{8}}{\frac{\pi^2}{8}} \] Finding a common denominator: \[ = \frac{\frac{5\pi^2}{4} + \frac{9\pi^2}{8}}{\frac{\pi^2}{8}} = \frac{\frac{10\pi^2}{8} + \frac{9\pi^2}{8}}{\frac{\pi^2}{8}} = \frac{19\pi^2/8}{\pi^2/8} = 19 \] ### Step 9: Calculate \( \left( \frac{M + 9m}{m} \right)^3 \) Finally: \[ \left( \frac{M + 9m}{m} \right)^3 = 19^3 = 6859 \] ### Final Answer The value of \( \left( \frac{M + 9m}{m} \right)^3 \) is \( 6859 \). ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - H)(MULTIPLE TRUE-FALSE TYPE QUESTIONS)|1 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

Find the greatest and least values of the function f(x)=(sin^(-1)x)^3+(cos^(-1)x)^3,-1 le x le 1

The difference between the greatest and least value of the function f(x)=cosx+1/2cos2x-1/3cos3x is

If M and m are maximum and minimum value of the function f(x)= (tan^(2)x+4tanx+9)/(1+tan^(2)x) , then (M + m) equals

Let x+(1)/(x)=2, y+(1)/(y)=-2 and sin^(-1)x+cos^(-1)y=m pi , then the value of m is

If m and M are the minimum and the maximum values of 4+1/2 sin^2 2x-2cos^4x, x in R then M-m is equal to...

If M and m are the maximum and minimum values of (y)/(x) for pair of real numbers (x, y) which satisfy the equation (x-3)^(2)+(y-3)^(2)=6 , then the value of (1)/(M)+(1)/(m) is

If |z-4+3i| leq 1 and m and n be the least and greatest values of |z| and K be the least value of (x^4+x^2+4)/x on the interval (0,oo) , then K=

If |z-4+3i| leq 1 and m and n be the least and greatest values of |z| and K be the least value of (x^4+x^2+4)/x on the interval (0,oo) , then K=

If m is the least value (global minimum) and M is the greatest value (global maximum) of the function f(x) on the interval [a , b] (estimation of an integral), then m(b-a)lt=int_a^bf(x)dxlt=M(b-a)dot

If 2 lies between the roots of the equation t ^(2) - mt +2 =0,(m in R) then the value of [((2 |x|)/(9+x ^(2)))^(m)] is: (where [.] denotes greatest integer function)