Home
Class 12
MATHS
Solve (i) xdx +ydy + (xdy - ydx)/(x^(2) ...

Solve (i) `xdx +ydy + (xdy - ydx)/(x^(2) + y^(2)) = 0`
(ii) `y(1+xy) dx - xdy = 0`

Text Solution

Verified by Experts

(i) Identifying `(xdy - ydx)/(x^(2) + y^(2))` with `d(tan^(-1).(y)/(x))`, we have,
`xdx + ydy + d(tan^(-1).(y)/(x)) = 0`
Integrating we obtain,
`(x^(2))/(2) + (y^(2))/(2) + tan^(-1).(y)/(x) = k`, k being the constant of integration
`:. x^(2) + y^(2) + 2 tan^(-1).(y)/(x) = lambda, lambda` being another constant.
(ii) `y (1+xy)dx - xdy = 0`
`rArr (ydx - xdy) + xy^(2)dx = 0`
`rArr (ydx - xdy)/(y^(2)) + xdx = 0`
`rArr d((x)/(y)) + xdx = 0`
Integrating, we get
`(x^(2))/(y) + (y^(2))/(2) = k`, k being the constant of integration
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|26 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - A) Competition Level Questions|35 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos

Similar Questions

Explore conceptually related problems

Solve: xdy+ydx= (xdy-ydx)/(x^(2)+y^(2))

Solve: y(1+xy)dx-xdy=0

(1 + xy) ydx + (1-xy)xdy = 0

Solve xdx+ydy=xdy-ydx.

y(xy+1)dx+x(1+xy+x^(2)y^(2))dy=0

Solve: y^(4)dx+2xy^(3)dy=(ydx-xdy)/(x^(3)y^(3))

Solve: (1-x^2y^2)dx=ydx+xdy

The solution of the differential equation xdx+ydy =(xdy-ydx)/(x^(2)+y^(2)) is tan(f(x, y)-C)=(y)/(x) (where, C is an arbitrary constant). If f(1, 1)=1 , then f(pi, pi) is equal to

y^2dx+(x^2-xy+y^2)dy=0

Solve (y log x-1)y dx=xdy.