Home
Class 12
MATHS
Solve (dy)/(dx) = (x+2y - 3)/(2x + y - 3...

Solve `(dy)/(dx) = (x+2y - 3)/(2x + y - 3)`

Text Solution

Verified by Experts

Here `a_(1) = 1, b_(1) = 2 " " :. (a_(1))/(b_(1)) = (1)/(2)`
`a_(2) = 2, b_(2) = 1 " " :. (a_(2))/(b_(2)) = 2`
Now, `(a_(1))/(b_(1)) != (a_(2))/(b_(2))`
Thus case - I applies, we have setting,
`{:(x=u+h),(y=v+k):}}`
`(dv)/(du) = ((u+2v) + (h+2k-3))/((2u + v) + (2h + k-3))0`
Choose h, k such that
`{:(h+2k-3=0),(2h + k - 3 =0):}}`
The solution is h = 1, k = 1
`rArr (dv)/(du) = (u+2v)/(2u + v)`
Set `v = tu, rArr (dv)/(du) = t + (dt)/(du)`
Our equation reduces to
`t + u(dt)/(du) = (u+2tu)/(2u + tu) = (1+2t)/(2+t)`
`rArr u(dt)/(du) = (1+2t)/(2+t) - t = (1+2t-2t-t^(2))/(2+t) = (1-t^(2))/(2+t)`
`rArr (2+t)/(1-t^(2)) dt = (du)/(2)`
`rArr (2)/(1-t^(2))dt+(1)/(2).2(t)/(1-t^(2)) dt = (du)/(u)`
On integrating, we get
`ln|(1+t)/(1-t)| - (1)/(2)ln|1-t^(2)| = ln|u|+ ln|k|`, k being the constant of integration.
`rArr ln|((1+(v)/(u))/(1-(v)/(u)))|-(1)/(2)ln(1-(v^(2))/(u^(2)))| = ln(uk)|`
`rArr |((u+v)/(u-v))| - ln|(sqrt(u^(2)-v^(2)))/(u)| = ln|(uk)|`
`rArr ln|((u+v)/(u-v).(u)/(sqrt(u^(2)-v^(2))))| = ln|uk|`
`rArr (usqrt(u+v))/((u-v)^((3)/(2))) = +- uk`
`rArr k(u-v)^((3)/(2)) = +-sqrt(u+v)`
`rArr k(x-1-y+1)^((3)/(2)) = sqrt(x-1+y-1)`
`rArr k(x-y)^((3)/(2)) = sqrt(x+y-2)`
`:. k^(2)(x-y)^(3) = (x+y-2)`
`rArr (x-y)^(3) = lambda(x+y-2), lambda` being another constant.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|26 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - A) Competition Level Questions|35 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos

Similar Questions

Explore conceptually related problems

Solve (dy)/(dx)=(x+y)^2

Solve (dy)/(dx)=(x+y)^2

Solve: (dy)/(dx)=(2y)/x

Solve (dy)/(dx)=(x+2y+3)/(2x+3y+4)

Solve (dy)/(dx)+ 3y = e^(-2x)

Solve (dy)/(dx)+2y=cos x.

Solve : (dy)/(dx) - (2y)/(x) = y^(4)

Solve (dy)/(dx)+2*y/x=(y^3)/(x^3)

Solve (dy)/(dx)=(2x-y+1)/(x+2y-3)

Solve (dy)/(dx)=(2x-y+1)/(x+2y-3)