Home
Class 12
MATHS
If xsin((y)/(x))dy = (y sin((y)/(x))-x)d...

If `xsin((y)/(x))dy = (y sin((y)/(x))-x)dx`and y(1) `= (pi)/(2)` then the value of `cos((y)/(e^(7)))` is __________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( x \sin\left(\frac{y}{x}\right) dy = (y \sin\left(\frac{y}{x}\right) - x) dx \) with the initial condition \( y(1) = \frac{\pi}{2} \), we will follow these steps: ### Step 1: Rewrite the Differential Equation We start with the equation: \[ x \sin\left(\frac{y}{x}\right) dy = (y \sin\left(\frac{y}{x}\right) - x) dx \] We can rearrange this to express \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{y \sin\left(\frac{y}{x}\right) - x}{x \sin\left(\frac{y}{x}\right)} \] ### Step 2: Substitute \( y = vx \) Let \( v = \frac{y}{x} \), which implies \( y = vx \). Differentiating both sides with respect to \( x \) gives: \[ \frac{dy}{dx} = v + x \frac{dv}{dx} \] Substituting \( y = vx \) into the equation gives: \[ \frac{dy}{dx} = \frac{vx \sin(v) - x}{x \sin(v)} = \frac{v \sin(v) - 1}{\sin(v)} \] Thus, we have: \[ v + x \frac{dv}{dx} = \frac{v \sin(v) - 1}{\sin(v)} \] ### Step 3: Rearranging the Equation Rearranging gives: \[ x \frac{dv}{dx} = \frac{v \sin(v) - 1}{\sin(v)} - v \] This simplifies to: \[ x \frac{dv}{dx} = \frac{v \sin(v) - 1 - v \sin(v)}{\sin(v)} = \frac{-1}{\sin(v)} \] ### Step 4: Separate Variables We can separate the variables: \[ \sin(v) dv = -\frac{dx}{x} \] ### Step 5: Integrate Both Sides Integrating both sides gives: \[ -\cos(v) = -\ln|x| + C \] or \[ \cos(v) = \ln|x| + C \] ### Step 6: Apply Initial Condition Using the initial condition \( y(1) = \frac{\pi}{2} \), we have: \[ v = \frac{y}{x} = \frac{\frac{\pi}{2}}{1} = \frac{\pi}{2} \] Substituting \( x = 1 \) and \( v = \frac{\pi}{2} \): \[ \cos\left(\frac{\pi}{2}\right) = \ln(1) + C \implies 0 = 0 + C \implies C = 0 \] Thus, we have: \[ \cos(v) = \ln|x| \] ### Step 7: Substitute Back for \( y \) Substituting back for \( v \): \[ \cos\left(\frac{y}{x}\right) = \ln|x| \] ### Step 8: Find \( \cos\left(\frac{y}{e^7}\right) \) Now, we need to find \( \cos\left(\frac{y}{e^7}\right) \): \[ \cos\left(\frac{y}{e^7}\right) = \ln|e^7| = 7 \] ### Final Answer Thus, the value of \( \cos\left(\frac{y}{e^7}\right) \) is: \[ \boxed{7} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - H (Multiple True-False Type Questions)|2 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I (Subjective Type Questions)|16 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - F (Matrix-Match Type Questions)|2 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos

Similar Questions

Explore conceptually related problems

Solve xsin(y/x)dy=(ysin(y/x)-x)dx .

dy/dx = sin(x-y)+cos(x-y)

if y^x-x^y=1 then the value of (dy)/(dx) at x=1 is

if ( dy )/(dx) =1 + x +y +xy and y ( -1) =0 , then the value of ( y (0) +3 - e^(1//2))

Let y=f(x) satisfies (dy)/(dx)=(x+y)/(x) and f(e)=e then the value of f(1) is

Let x+(1)/(x)=2, y+(1)/(y)=-2 and sin^(-1)x+cos^(-1)y=m pi , then the value of m is

if 2^x+2^y=2^(x+y) then the value of (dy)/(dx) at x=y=1

(dy)/(dx)=(x+sin x)/(y+cos y)

If sin(x y)+cos(x y)=0 , then (dy)/(dx) is

IF x cos ( y //x ) ( ydx + xdy)=y sin ( y // x) ( xdy - ydx ) y (1) = 2 pi then the value of 4 ( y (4) )/(pi ) cos (( y (4))/(4)) is :