Home
Class 12
MATHS
The radius of y(sqrt(8)) + (17)/(9) if (...

The radius of `y(sqrt(8)) + (17)/(9)` if `(1+x^(2))(dy)/(dx) = x(1-y), y(0) = (4)/(3)` is ________

A

2

B

3

C

5

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation given by \[ (1 + x^2) \frac{dy}{dx} = x(1 - y) \] with the initial condition \( y(0) = \frac{4}{3} \), we will follow these steps: ### Step 1: Rearranging the Equation We start by rearranging the equation into a more manageable form: \[ \frac{dy}{1 - y} = -\frac{x}{1 + x^2} dx \] ### Step 2: Integrating Both Sides Next, we integrate both sides. The left side becomes: \[ \int \frac{dy}{1 - y} = -\ln|1 - y| \] For the right side, we can use the substitution \( a = 1 + x^2 \), which gives \( da = 2x dx \) or \( dx = \frac{da}{2x} \). Thus, we have: \[ \int -\frac{x}{1 + x^2} dx = -\frac{1}{2} \ln(1 + x^2) \] So, the integration gives us: \[ -\ln|1 - y| = -\frac{1}{2} \ln(1 + x^2) + C \] ### Step 3: Simplifying the Equation By exponentiating both sides, we can express this as: \[ |1 - y| = \frac{C}{\sqrt{1 + x^2}} \] ### Step 4: Applying the Initial Condition Using the initial condition \( y(0) = \frac{4}{3} \): \[ |1 - \frac{4}{3}| = \frac{C}{\sqrt{1 + 0^2}} \implies |-\frac{1}{3}| = C \implies C = \frac{1}{3} \] ### Step 5: Final Form of the Equation Substituting \( C \) back into the equation, we have: \[ 1 - y = \frac{1/3}{\sqrt{1 + x^2}} \implies y = 1 - \frac{1/3}{\sqrt{1 + x^2}} \] ### Step 6: Finding \( y(\sqrt{8}) \) Now, we need to find \( y(\sqrt{8}) \): \[ y(\sqrt{8}) = 1 - \frac{1/3}{\sqrt{1 + (\sqrt{8})^2}} = 1 - \frac{1/3}{\sqrt{1 + 8}} = 1 - \frac{1/3}{\sqrt{9}} = 1 - \frac{1/3}{3} = 1 - \frac{1}{9} = \frac{8}{9} \] ### Step 7: Adding \( \frac{17}{9} \) Finally, we compute: \[ y(\sqrt{8}) + \frac{17}{9} = \frac{8}{9} + \frac{17}{9} = \frac{25}{9} \] ### Step 8: Finding the Radius The radius is the value of \( y(\sqrt{8}) + \frac{17}{9} \): \[ \text{Radius} = \frac{25}{9} \] ### Final Answer The radius of \( y(\sqrt{8}) + \frac{17}{9} \) is \( \frac{25}{9} \). ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - H (Multiple True-False Type Questions)|2 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos

Similar Questions

Explore conceptually related problems

If (1+x^2)(dy)/(dx)=x(1-y),y(0)=4/3, then the value of y(8)+8/9 is

If y=sqrt((1-x)/(1+x)) prove that (1-x^2)(dy)/(dx)+y=0

If y=sqrt((1-x)/(1+x)), prove that (1-x^2)dy/(dx)+y=0

If y=sqrt(x)+(1)/(sqrt(x)) , then (dy)/(dx) at x=1 is

If y=sqrt((1-x)/(1+x)), prove that ((1-x^2)dy)/(dx)+y=0

(dy)/(dx)=(x+y+1)/(2x+2y+3)

If y=sqrt((1-x)/(1+x)),p rov et h a t(1-x^2)(dy)/(dx)+y=0

Given that y= sqrt( (1-x)/( 1+x)) show that (1-x^(2) ) (dy)/( dx) + y=0

If y=(x+sqrt(1+x^2))^n then (1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)

dy/dx=(x-y+1)/(2x-2y+3)