Home
Class 12
MATHS
Suppose g(x) is a real valued differenti...

Suppose `g(x)` is a real valued differentiable function satisfying `g'(x) + 2g(x) gt 1.` Then show that `e^(2x)(g(x)-1/2)` is an increasing function.

Text Solution

AI Generated Solution

To show that \( e^{2x}(g(x) - \frac{1}{2}) \) is an increasing function, we will follow these steps: ### Step 1: Define the function Let \[ f(x) = e^{2x} \left( g(x) - \frac{1}{2} \right). \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - H (Multiple True-False Type Questions)|2 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos

Similar Questions

Explore conceptually related problems

Let g (x) be a differentiable function satisfying (d)/(dx){g(x)}=g(x) and g (0)=1 , then intg(x)((2-sin2x)/(1-cos2x))dx is equal to

Let g\ :[1,6]->[0,\ ) be a real valued differentiable function satisfying g^(prime)(x)=2/(x+g(x)) and g(1)=0, then the maximum value of g cannot exceed ln2 (b) ln6 6ln2 (d) 2\ ln\ 6

Let g(x) be a function satisfying g(0) = 2, g(1) = 3, g(x+2) = 2g(x+1), then find g(5).

A differentiable function y = g(x) satisfies int_0^x(x-t+1) g(t) dt=x^4+x^2 for all x>=0 then y=g(x) satisfies the differential equation

If f(x)a n dg(f) are two differentiable functions and g(x)!=0 , then show trht (f(x))/(g(x)) is also differentiable d/(dx){(f(x))/(g(x))}=(g(x)d/x{f(x)}-g(x)d/x{g(x)})/([g(x)]^2)

If f(x), g(x) be twice differentiable function on [0,2] satisfying f''(x)=g''(x) , f'(1)=4 and g'(1)=6, f(2)=3, g(2)=9, then f(x)-g(x) at x=4 equals to:- (a) -16 (b) -10 (c) -8

Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1 +x) then (1) g(x) is an odd function (2) g(x) is an even function (3) graph of f(x) is symmetrical about the line x= 1 (4) f'(1)=0

Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1 +x) then (1) g(x) is an odd function (2) g(x) is an even function (3) graph of f(x) is symmetrical about the line x= 1 (4) f'(1)=0

If f(x), g(x) be twice differentiable functions on [0,2] satisfying f''(x) = g''(x) , f'(1) = 2g'(1) = 4 and f(2) = 3 g(2) = 9 , then f(x)-g(x) at x = 4 equals (A) 0 (B) 10 (C) 8 (D) 2

If f(x), g(x) be twice differentiable functions on [0,2] satisfying f''(x) = g''(x) , f'(1) = 2g'(1) = 4 and f(2) = 3 g(2) = 9 , then f(x)-g(x) at x = 4 equals (A) 0 (B) 10 (C) 8 (D) 2