Home
Class 12
MATHS
If A+I={:[(2,2,3),(3,-1,1),(4,2,2)]:} th...

If `A+I={:[(2,2,3),(3,-1,1),(4,2,2)]:}` then show that `A^(3)-23A-40I=0`

Text Solution

AI Generated Solution

To solve the problem, we need to find the matrix \( A \) from the equation \( A + I = \begin{pmatrix} 2 & 2 & 3 \\ 3 & -1 & 1 \\ 4 & 2 & 2 \end{pmatrix} \), and then show that \( A^3 - 23A - 40I = 0 \). ### Step 1: Find Matrix \( A \) Given: \[ A + I = \begin{pmatrix} 2 & 2 & 3 \\ 3 & -1 & 1 \\ 4 & 2 & 2 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Example 15|1 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Example 16|1 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Example 13|1 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(1,2,2),(2,1,2),(2,2,1):}] , then show that A^(2)-4A-5I_(3)=0 . Hemce find A^(-1) .

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

(i) if A=[{:(4,-1,-4),(3,0,-4),(3,-1,-3):}], then show that A^(2)=I

If A=[1 2 3 3-2 1 4 2 1] , then show that A^3-23 A-401=0 .

If A=[(1,2),(2,1)] show that A^(2)-3I=2A

if A[{:(2,-3,-5),(-1,4,5),(1,-3,-4):}]and B=[{:(2,-2,-4),(-1,3,4),(1,-2,-3):}], then show that (i) AB=A and BA=B.

if A[{:(1,3,-1),(2,2,-1),(3,0,-1):}]and B=[{:(-2,3,-1),(-1,2,-1),(-6,9,-4):}], then show that AB=BA.

If A=[{:(,2,1),(,0,0):}], B=[{:(,2,3),(,4,1):}] and C=[{:(,1,4),(,0,2):}] then show that (i) A(B+C)=AB+AC (ii) (B-A)C=BC-AC .

(i) if A=[{:(1,-1),(2,3):}], then show that A^(2)-4A+5I=O. (ii) if f(x)=x^(2)+3x-5and A=[{:(2,-1),(4,3):}], then find f(A).

If A=[{:(1,0,-1),(2,1,3),(0,1, 1):}] then verify that A^(2)+A=A(A+I) , where I is 3xx3 unit matrix.