Home
Class 12
MATHS
A={:[(1,2,1),(3,1,4)]:},B={:[(1,-1),(2,3...

`A={:[(1,2,1),(3,1,4)]:},B={:[(1,-1),(2,3),(-1,1)]:}`, verify (AB)'=B'A'

Text Solution

AI Generated Solution

To verify that \((AB)' = B'A'\), we will follow these steps: ### Step 1: Define the matrices A and B Given: \[ A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 1 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -1 \\ 2 & 3 \\ -1 & 1 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Example 18|1 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Example 19|1 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Example 16|1 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

A={:[(1,2,3),(4,1,-1),(2,3,1)]:},B={:[(1,-1,1),(2,0,1),(1,1,1)]:} , verify (AB)'=B'A'.

If A={:[(1,2,3),(3,2,1)]:},B={:[(1,-1,4),(2,3,1)]:} , verify that (i) (B')'=B , (ii) (A-B)'=A'-B' (iii) (A+B)'=A'+B' , (iv) (kA)'=kA', where k is any constant (v) (2A+3B)'=2A'+3B'

Let A={:[(1,2),(3,4)]:},B={:[(-1,-2),(-4,-3)]:} , find AB and BA.

Given A=[{:(2,4,0),(3,9,6):}] "and" B=[{:(1,4),(2,8),(1,3):}] , is (AB)=B'A'?

If A={:[(1,4,2),(-1,2,3)]:}andB={:[(1,0,0),(0,-1,1)]:} , verify that (i) (A^('))^(')=A (ii) (kB)^(')=kB^(') (iii) (A+B)^(')=A^(')+B^(')

If A=[{:(2,1,2),(1,2,4):}] and B=[{:(4,1),(2,3),(1,2):}] Find AB and BA ( if it exist)

(i) if A=[{:(1,-4),(3,1):}]and b=[{:(1,0,5),(-2,4,3):}], then show that : (AB)'=B'A' (ii) if A=[{:(2,3),(0,1):}]and B=[{:(3,4),(2,1):}], then prove that : (AB)'=B'A'

If A=[{:(1,2),(-2,1):}],B=[{:(2,3),(3,-4):}] and C=[{:(1,0),(-1,0):}] , verfity (i) A(B+C)=AB+AC.

If A=[{:(,1,4),(,1,-3):}] and B=[{:(,1,2),(,-1,-1):}] , find: (A+B)^2

If A=[[2,1,3],[4,1,0]], B=[[1,-1],[0,2],[5,0]] , verify that (AB)\'=B\'A\'