Home
Class 12
MATHS
If A=[[2,-2,-4],[-1,3,4],[1,-2,-3]] then...

If `A=[[2,-2,-4],[-1,3,4],[1,-2,-3]]` then A is `1) an idempotent matrix 2) nilpotent matrix 3) involutary 4) orthogonal matrix

A

Statement -1 is True, Statement -2 is True , Statement -2 is a correct explanation for Statement-2

B

Statement-1 is True, Statement -2 is True , Statement -2 is NOT a correct explanation for Statement-2

C

Statement -1 is True, Statement -2 is False

D

Statement -1 is False , Statement -2 is True

Text Solution

AI Generated Solution

The correct Answer is:
To determine the properties of the matrix \( A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix} \), we will check if it is an idempotent matrix, nilpotent matrix, involutary matrix, or orthogonal matrix. ### Step 1: Check if \( A \) is an idempotent matrix An idempotent matrix satisfies the condition \( A^2 = A \). **Calculation of \( A^2 \):** \[ A^2 = A \cdot A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix} \cdot \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix} \] Calculating the elements of \( A^2 \): - First row, first column: \( 2 \cdot 2 + (-2) \cdot (-1) + (-4) \cdot 1 = 4 + 2 - 4 = 2 \) - First row, second column: \( 2 \cdot (-2) + (-2) \cdot 3 + (-4) \cdot (-2) = -4 - 6 + 8 = -2 \) - First row, third column: \( 2 \cdot (-4) + (-2) \cdot 4 + (-4) \cdot (-3) = -8 - 8 + 12 = -4 \) - Second row, first column: \( -1 \cdot 2 + 3 \cdot (-1) + 4 \cdot 1 = -2 - 3 + 4 = -1 \) - Second row, second column: \( -1 \cdot (-2) + 3 \cdot 3 + 4 \cdot (-2) = 2 + 9 - 8 = 3 \) - Second row, third column: \( -1 \cdot (-4) + 3 \cdot 4 + 4 \cdot (-3) = 4 + 12 - 12 = 4 \) - Third row, first column: \( 1 \cdot 2 + (-2) \cdot (-1) + (-3) \cdot 1 = 2 + 2 - 3 = 1 \) - Third row, second column: \( 1 \cdot (-2) + (-2) \cdot 3 + (-3) \cdot (-2) = -2 - 6 + 6 = -2 \) - Third row, third column: \( 1 \cdot (-4) + (-2) \cdot 4 + (-3) \cdot (-3) = -4 - 8 + 9 = -3 \) Thus, we find: \[ A^2 = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix} = A \] Since \( A^2 = A \), \( A \) is an idempotent matrix. ### Step 2: Check if \( A \) is a nilpotent matrix A nilpotent matrix satisfies the condition \( A^p = 0 \) for some positive integer \( p \). Since we already found \( A^2 = A \) and not the zero matrix, \( A \) is not nilpotent. ### Step 3: Check if \( A \) is an involutary matrix An involutary matrix satisfies the condition \( A^2 = I \), where \( I \) is the identity matrix. Since \( A^2 = A \) and not the identity matrix, \( A \) is not involutary. ### Step 4: Check if \( A \) is an orthogonal matrix An orthogonal matrix satisfies the condition \( A^T A = I \). Calculating \( A^T \): \[ A^T = \begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -2 \\ -4 & 4 & -3 \end{bmatrix} \] Now, compute \( A^T A \): \[ A^T A = \begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -2 \\ -4 & 4 & -3 \end{bmatrix} \cdot \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix} \] Calculating the elements of \( A^T A \): - First row, first column: \( 2 \cdot 2 + (-1) \cdot (-1) + 1 \cdot 1 = 4 + 1 + 1 = 6 \) - First row, second column: \( 2 \cdot (-2) + (-1) \cdot 3 + 1 \cdot (-2) = -4 - 3 - 2 = -9 \) - First row, third column: \( 2 \cdot (-4) + (-1) \cdot 4 + 1 \cdot (-3) = -8 - 4 - 3 = -15 \) - Second row, first column: \( -2 \cdot 2 + 3 \cdot (-1) + (-2) \cdot 1 = -4 - 3 - 2 = -9 \) - Second row, second column: \( -2 \cdot (-2) + 3 \cdot 3 + (-2) \cdot (-2) = 4 + 9 + 4 = 17 \) - Second row, third column: \( -2 \cdot (-4) + 3 \cdot 4 + (-2) \cdot (-3) = 8 + 12 + 6 = 26 \) - Third row, first column: \( -4 \cdot 2 + 4 \cdot (-1) + (-3) \cdot 1 = -8 - 4 - 3 = -15 \) - Third row, second column: \( -4 \cdot (-2) + 4 \cdot 3 + (-3) \cdot (-2) = 8 + 12 + 6 = 26 \) - Third row, third column: \( -4 \cdot (-4) + 4 \cdot 4 + (-3) \cdot (-3) = 16 + 16 + 9 = 41 \) Thus, we find: \[ A^T A = \begin{bmatrix} 6 & -9 & -15 \\ -9 & 17 & 26 \\ -15 & 26 & 41 \end{bmatrix} \] Since \( A^T A \neq I \), \( A \) is not orthogonal. ### Conclusion The only property that holds true for the matrix \( A \) is that it is an **idempotent matrix**.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - F) Matrix - Match Type Question|1 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - G) Integer Answer Type Questions|4 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - D) Linked Comprehension Type Questions|3 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

show that the matrix A=[(2,-2,-4),(-1,3,4),(1,-2,-3)] is idempotent.

Express the matrix B=[[2,-2,-4],[-1, 3,4],[ 1,-2,-3]] as the sum of a symmetric and skew symmetric matrix.

The matrix A=[(-5,-8,0),(3,5,0),(1,2,-1)] is (A) idempotent matrix (B) involutory matrix (C) nilpotent matrix (D) none of these

If [(9,-1,4),(-2,1,3)]=A+[(1,2,-1),(0,4,9)], then find the matrix A.

If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then the trace of the matrix Adj(AdjA) is

The matrix {:A=[(1,-3,-4),(-1,3,4),(1,-3,-4)]:} is nilpotent of index

show that [(1,1,3),(5,2,6),(-2,-1,-3)]=A is nilpotent matrix of order 3.

Express the matrix A=[[2,4,-6],[ 7,3,5],[ 1,-2, 4]] as the sum of a symmetric and skew symmetric matrix.

Express the matrix A=[[3,-2,-4], [3,-2,-5],[-1, 1, 2]] as the sum of a symmetric and skew-symmetric matrix and verify your result.

If [[a, b],[ c,1-a]] is an idempotent matrix and f(x)=x-x^2 , bc=1/4 , then the value of 1//f(a) is ______.