Home
Class 12
MATHS
Let A=[(omega,-omega),(-omega,omega)] w...

Let `A=[(omega,-omega),(-omega,omega)]` where w is a complex cube root of unity, `B =[(1,-1),(-1,1) and A^9=2^kB` , where `k = ....`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate \( A^9 \) where \( A = \begin{pmatrix} \omega & -\omega \\ -\omega & \omega \end{pmatrix} \) and \( \omega \) is a complex cube root of unity. We also need to show that \( A^9 = 2^k B \) for some integer \( k \), where \( B = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \). ### Step 1: Understand the properties of \( \omega \) Since \( \omega \) is a cube root of unity, we have: \[ \omega^3 = 1 \quad \text{and} \quad 1 + \omega + \omega^2 = 0 \] ### Step 2: Calculate \( A^2 \) We will first calculate \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} \omega & -\omega \\ -\omega & \omega \end{pmatrix} \begin{pmatrix} \omega & -\omega \\ -\omega & \omega \end{pmatrix} \] Calculating the elements: - First row, first column: \( \omega \cdot \omega + (-\omega)(-\omega) = \omega^2 + \omega^2 = 2\omega^2 \) - First row, second column: \( \omega \cdot (-\omega) + (-\omega)\omega = -\omega^2 - \omega^2 = -2\omega^2 \) - Second row, first column: \( -\omega \cdot \omega + \omega(-\omega) = -\omega^2 - \omega^2 = -2\omega^2 \) - Second row, second column: \( -\omega \cdot (-\omega) + \omega \cdot \omega = \omega^2 + \omega^2 = 2\omega^2 \) Thus, we have: \[ A^2 = \begin{pmatrix} 2\omega^2 & -2\omega^2 \\ -2\omega^2 & 2\omega^2 \end{pmatrix} \] ### Step 3: Calculate \( A^3 \) Next, we calculate \( A^3 = A^2 \cdot A \): \[ A^3 = \begin{pmatrix} 2\omega^2 & -2\omega^2 \\ -2\omega^2 & 2\omega^2 \end{pmatrix} \begin{pmatrix} \omega & -\omega \\ -\omega & \omega \end{pmatrix} \] Calculating the elements: - First row, first column: \( 2\omega^2 \cdot \omega + (-2\omega^2)(-\omega) = 2\omega^3 + 2\omega^3 = 4 \) - First row, second column: \( 2\omega^2 \cdot (-\omega) + (-2\omega^2)\omega = -2\omega^3 - 2\omega^3 = -4 \) - Second row, first column: \( -2\omega^2 \cdot \omega + 2\omega^2(-\omega) = -2\omega^3 - 2\omega^3 = -4 \) - Second row, second column: \( -2\omega^2 \cdot (-\omega) + 2\omega^2 \cdot \omega = 2\omega^3 + 2\omega^3 = 4 \) Thus, we have: \[ A^3 = \begin{pmatrix} 4 & -4 \\ -4 & 4 \end{pmatrix} \] ### Step 4: Calculate \( A^6 \) Next, we calculate \( A^6 = (A^3)^2 \): \[ A^6 = \begin{pmatrix} 4 & -4 \\ -4 & 4 \end{pmatrix} \begin{pmatrix} 4 & -4 \\ -4 & 4 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 4 \cdot 4 + (-4)(-4) = 16 + 16 = 32 \) - First row, second column: \( 4 \cdot (-4) + (-4) \cdot 4 = -16 - 16 = -32 \) - Second row, first column: \( -4 \cdot 4 + 4 \cdot (-4) = -16 - 16 = -32 \) - Second row, second column: \( -4 \cdot (-4) + 4 \cdot 4 = 16 + 16 = 32 \) Thus, we have: \[ A^6 = \begin{pmatrix} 32 & -32 \\ -32 & 32 \end{pmatrix} \] ### Step 5: Calculate \( A^9 \) Now, we calculate \( A^9 = A^6 \cdot A^3 \): \[ A^9 = \begin{pmatrix} 32 & -32 \\ -32 & 32 \end{pmatrix} \begin{pmatrix} 4 & -4 \\ -4 & 4 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 32 \cdot 4 + (-32)(-4) = 128 + 128 = 256 \) - First row, second column: \( 32 \cdot (-4) + (-32) \cdot 4 = -128 - 128 = -256 \) - Second row, first column: \( -32 \cdot 4 + 32 \cdot (-4) = -128 - 128 = -256 \) - Second row, second column: \( -32 \cdot (-4) + 32 \cdot 4 = 128 + 128 = 256 \) Thus, we have: \[ A^9 = \begin{pmatrix} 256 & -256 \\ -256 & 256 \end{pmatrix} \] ### Step 6: Relate \( A^9 \) to \( B \) We know that: \[ B = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \] We can express \( A^9 \) as: \[ A^9 = 256 \cdot \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = 256B \] ### Step 7: Determine \( k \) From the equation \( A^9 = 2^k B \), we can see that: \[ 256 = 2^8 \] Thus, \( k = 8 \). ### Final Answer \[ k = 8 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - H) Multiple True - False Type Questions|2 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - I) Subjective Type Questions|3 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - F) Matrix - Match Type Question|1 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

If A =({:( 1,1,1),( 1,omega ^(2) , omega ),( 1 ,omega , omega ^(2)) :}) where omega is a complex cube root of unity then adj -A equals

If A=[{:(omega,0),(0,omega):}] , where omega is cube root of unity, then what is A^(100) equal to ?

If w is a complex cube root of unity. Show that |[1,w, w^2],[w, w^2, 1],[w^2, 1,w]|=0 .

If omega is a cube root of unity, then 1+omega = …..

Evaluate |(1,omega,omega^2),(omega,omega^2,1),(omega^2,omega, omega)| where omega is cube root of unity.

If omega is a cube root of unity, then 1+ omega^(2)= …..

(1)/(a + omega) + (1)/(b+omega) +(1)/(c + omega) + (1)/(d + omega) =(1)/(omega) where, a,b,c,d, in R and omega is a complex cube root of unity then find the value of sum (1)/(a^(2)-a+1)

If 1, omega, omega^(2) are three cube roots of unity, prove that (1- omega) (1- omega^(2))= 3

If 1,omega,omega^2 are the cube roots of unity, then /_\ is equal to.....

Prove that the value of determinant |{:(1,,omega,,omega^(2)),(omega ,,omega^(2),,1),( omega^(2),, 1,,omega):}|=0 where omega is complex cube root of unity .