Home
Class 12
MATHS
The distance between the points (a cosal...

The distance between the points `(a cosalpha, a sinalpha)` and `(a cosbeta, a sinbeta)` where a> 0

A

`2|asin ""(alpha-beta)/(2)|`

B

`|a sin ""(alpha-beta)/(2)|`

C

`2|a sin ""(alpha+beta)/(2)|`

D

`|asin""(alphs+beta)/(2)|`

Text Solution

AI Generated Solution

The correct Answer is:
To find the distance between the points \((a \cos \alpha, a \sin \alpha)\) and \((a \cos \beta, a \sin \beta)\), we will use the distance formula. Here’s the step-by-step solution: ### Step 1: Identify the Points The points given are: - Point 1: \((x_1, y_1) = (a \cos \alpha, a \sin \alpha)\) - Point 2: \((x_2, y_2) = (a \cos \beta, a \sin \beta)\) ### Step 2: Use the Distance Formula The distance \(d\) between two points \((x_1, y_1)\) and \((x_2, y_2)\) is given by: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] ### Step 3: Substitute the Points into the Formula Substituting the coordinates of the points into the distance formula: \[ d = \sqrt{(a \cos \beta - a \cos \alpha)^2 + (a \sin \beta - a \sin \alpha)^2} \] ### Step 4: Factor Out \(a\) Factor \(a\) from both terms inside the square root: \[ d = \sqrt{a^2 \left((\cos \beta - \cos \alpha)^2 + (\sin \beta - \sin \alpha)^2\right)} \] This simplifies to: \[ d = a \sqrt{(\cos \beta - \cos \alpha)^2 + (\sin \beta - \sin \alpha)^2} \] ### Step 5: Expand the Terms Now, we will expand the terms inside the square root: \[ (\cos \beta - \cos \alpha)^2 = \cos^2 \beta + \cos^2 \alpha - 2 \cos \alpha \cos \beta \] \[ (\sin \beta - \sin \alpha)^2 = \sin^2 \beta + \sin^2 \alpha - 2 \sin \alpha \sin \beta \] ### Step 6: Combine the Expanded Terms Now combine the two expansions: \[ d = a \sqrt{\left(\cos^2 \beta + \sin^2 \beta\right) + \left(\cos^2 \alpha + \sin^2 \alpha\right) - 2(\cos \alpha \cos \beta + \sin \alpha \sin \beta)} \] Using the Pythagorean identity \(\cos^2 x + \sin^2 x = 1\): \[ d = a \sqrt{1 + 1 - 2(\cos \alpha \cos \beta + \sin \alpha \sin \beta)} \] This simplifies to: \[ d = a \sqrt{2 - 2(\cos \alpha \cos \beta + \sin \alpha \sin \beta)} \] ### Step 7: Use the Cosine of the Angle Difference Recognizing the cosine of the angle difference: \[ \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \] Thus, we can rewrite the expression: \[ d = a \sqrt{2 - 2\cos(\alpha - \beta)} \] ### Step 8: Factor Out the Common Terms Factoring out the common terms gives: \[ d = a \sqrt{2(1 - \cos(\alpha - \beta))} \] ### Step 9: Use the Identity for Sine Using the identity \(1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right)\): \[ d = a \sqrt{2 \cdot 2 \sin^2\left(\frac{\alpha - \beta}{2}\right)} \] This simplifies to: \[ d = 2a \left|\sin\left(\frac{\alpha - \beta}{2}\right)\right| \] ### Final Result Thus, the distance between the two points is: \[ d = 2a \left|\sin\left(\frac{\alpha - \beta}{2}\right)\right| \]
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION B) (OBJECTIVE TYPE QUESTIONS) (ONLY ONE ANSWER)|33 Videos
  • STRAIGHT LINES

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION C) (OBJECTIVE TYPE QUESTIONS) (MORE THAN ONE ANSWER)|14 Videos
  • STRAIGHT LINES

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|23 Videos
  • STATISTICS

    AAKASH INSTITUTE ENGLISH|Exercise Section-C Assertion-Reason|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos

Similar Questions

Explore conceptually related problems

Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a\ cosalpha,\ a\ sinalpha)a n d\ (a\ cosbeta,\ asinbeta)dot

If the points A(0,0),B(cosalpha,sinalpha) , and C(cosbeta,sinbeta) are the vertices of a right- angled triangle, then

The points A(0,0),B(cosalpha,sinalpha) and C(cosbeta,sinbeta) are the vertices of a right-angled triangle then

If xcosalpha+ysinalpha=xcosbeta+ysinbeta=2a then cosalpha cosbeta=

Evaluate the following: |[cosalpha, sinalpha],[sinalpha, cosalpha]|

Find the amplitude of sinalpha+i(1-cosalpha)

sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta)

Without expanding evaluate the determinant |[sinalpha,cosalpha,sin(alpha+delta)],[sinbeta,cosbeta,sin(beta+delta)],[singamma,cosgamma,sin(gamma+delta)]|

Without expanding evaluate the determinant |[sinalpha,cosalpha,sin(alpha+delta)],[sinbeta,cosbeta,sin(beta+delta)],[singamma,cosgamma,sin(gamma+delta)]|

Show without expanding at any stage that: | (1,cosalpha-sinalpha, cosalpha+sinalpha),(1,cosbeta-sinbeta,cosbeta+sinbeta),(1, cosgamma-singamma,cosgamma+singamma)| =2 |(1,cosalpha, sinalpha),(1,cosbeta, sinbeta),(1,cosgamma,singamma)|

AAKASH INSTITUTE ENGLISH-STRAIGHT LINES-ASSIGNMENT (SECTION A) (OBJECTIVE TYPE QUESTIONS) (ONLY ONE ANSWER)
  1. Find the point on y-axis which is equidistant from A(-5,-2) and B(3,2)...

    Text Solution

    |

  2. The value (s) of x for which the area of triangle formed by the points...

    Text Solution

    |

  3. The distance between the points (a cosalpha, a sinalpha) and (a cosbet...

    Text Solution

    |

  4. If the line x/a+y/b=1 passes through the points (2,-3) and (4,-5) then...

    Text Solution

    |

  5. The triangle formed by the lines x + y = 0,3x + y = 4,x+3y = 4 is

    Text Solution

    |

  6. Four points A(6,\ 3),\ \ B(-3,\ 5),\ \ C(4,\ -2) and D(x ,\ 3x) are...

    Text Solution

    |

  7. The lines x=3,y=4and 4x-3y+a=0 are concurrent for a equal to

    Text Solution

    |

  8. y-axis divides the linje segment joining (-3,-4)and (1,-2) in the rati...

    Text Solution

    |

  9. The distance of the mid point of the line joining the points (a sin th...

    Text Solution

    |

  10. The slope of the line passing through the points (a^(2),b)and (b^(2),a...

    Text Solution

    |

  11. If the slope of a line joining the points (7,3)and (k,2) is -4, then t...

    Text Solution

    |

  12. The value of 'p' such that the line passing through the points (-4,p)a...

    Text Solution

    |

  13. The value of 'p' such that line passing through the points (-4,p)&(1,3...

    Text Solution

    |

  14. The two lines ax+by+c=0 and a'x+b'y+c'=0 are perpendicular if (i) ab'...

    Text Solution

    |

  15. Slope of a line which cuts off intercepts of equal lengths on the axes...

    Text Solution

    |

  16. Angle made by the line passsing through (1,0) and (-2,sqrt3) with x-ax...

    Text Solution

    |

  17. Angle between x=2and x-3y=6 is

    Text Solution

    |

  18. If the lines y = 3x +1 and 2y = x +3 are equally inclined to the line ...

    Text Solution

    |

  19. Prove that the points (2,-1), (0,2), (2,3) and (4,0) are the coordi...

    Text Solution

    |

  20. The obtuse angle between the lines y=-2xand y=x+2 is

    Text Solution

    |