Home
Class 12
MATHS
If alpha,beta roots of x^(2)-6p(1)x+2=0,...

If `alpha,beta` roots of `x^(2)-6p_(1)x+2=0,beta,gamma` are roots of `x^(2)-6p_(2)x+3=0and gamma,alpha` are roots of equation `x^(2)-6p_(3)x+6=0` where `p_(1),p_(2),p_(3)` are positive then
If `A(alpha,(1)/(alpha)),B(beta,(1)/(beta)),C(gamma,(1)/(gamma))` be vertices of `DeltaABC` then centroid of `DeltaABC` is

A

`(4,(11)/(18))`

B

`(2,(11)/(18))`

C

`(-2(11)/(18))`

D

`(-4(11)/(18))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first analyze the given equations and find the values of the roots \( \alpha, \beta, \) and \( \gamma \). Then we will determine the vertices of triangle \( ABC \) and finally calculate the centroid. ### Step 1: Finding the roots \( \alpha, \beta, \gamma \) 1. **First Equation**: \[ x^2 - 6p_1x + 2 = 0 \] - Sum of roots \( \alpha + \beta = 6p_1 \) - Product of roots \( \alpha \beta = 2 \) 2. **Second Equation**: \[ x^2 - 6p_2x + 3 = 0 \] - Sum of roots \( \beta + \gamma = 6p_2 \) - Product of roots \( \beta \gamma = 3 \) 3. **Third Equation**: \[ x^2 - 6p_3x + 6 = 0 \] - Sum of roots \( \gamma + \alpha = 6p_3 \) - Product of roots \( \gamma \alpha = 6 \) ### Step 2: Setting up equations We have the following equations: 1. \( \alpha + \beta = 6p_1 \) and \( \alpha \beta = 2 \) 2. \( \beta + \gamma = 6p_2 \) and \( \beta \gamma = 3 \) 3. \( \gamma + \alpha = 6p_3 \) and \( \gamma \alpha = 6 \) ### Step 3: Expressing \( p_1, p_2, p_3 \) From the product of the roots: - From the first equation: \( \beta = \frac{2}{\alpha} \) - From the second equation: \( \gamma = \frac{3}{\beta} = \frac{3\alpha}{2} \) - From the third equation: \( \alpha = \frac{6}{\gamma} = \frac{6 \cdot 2}{3} = 4 \) ### Step 4: Solving for \( \beta \) and \( \gamma \) 1. Substitute \( \alpha = 4 \) into \( \alpha \beta = 2 \): \[ 4\beta = 2 \implies \beta = \frac{1}{2} \] 2. Substitute \( \beta = \frac{1}{2} \) into \( \beta \gamma = 3 \): \[ \frac{1}{2} \gamma = 3 \implies \gamma = 6 \] ### Step 5: Values of \( \alpha, \beta, \gamma \) Now we have: - \( \alpha = 4 \) - \( \beta = \frac{1}{2} \) - \( \gamma = 6 \) ### Step 6: Finding the vertices of triangle \( ABC \) The vertices are given as: - \( A(\alpha, \frac{1}{\alpha}) = (4, \frac{1}{4}) \) - \( B(\beta, \frac{1}{\beta}) = \left(\frac{1}{2}, 2\right) \) - \( C(\gamma, \frac{1}{\gamma}) = (6, \frac{1}{6}) \) ### Step 7: Calculating the centroid The formula for the centroid \( G \) of triangle \( ABC \) is: \[ G\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right) \] Substituting the coordinates: \[ G\left(\frac{4 + \frac{1}{2} + 6}{3}, \frac{\frac{1}{4} + 2 + \frac{1}{6}}{3}\right) \] Calculating the x-coordinate: \[ \frac{4 + \frac{1}{2} + 6}{3} = \frac{10.5}{3} = 3.5 \] Calculating the y-coordinate: Finding a common denominator for \( \frac{1}{4}, 2, \frac{1}{6} \): \[ \frac{1}{4} = \frac{3}{12}, \quad 2 = \frac{24}{12}, \quad \frac{1}{6} = \frac{2}{12} \] \[ \frac{\frac{1}{4} + 2 + \frac{1}{6}}{3} = \frac{3 + 24 + 2}{12 \cdot 3} = \frac{29}{36} \] Thus, the centroid \( G \) is: \[ G\left(3.5, \frac{29}{36}\right) \] ### Final Answer The centroid of triangle \( ABC \) is: \[ \boxed{\left(3.5, \frac{29}{36}\right)} \]
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-E (ASSERTION-REASON TYPE QUESTIONS)|6 Videos
  • STRAIGHT LINES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-F (MATRIX-MATHC TYPE QUESTION)|3 Videos
  • STRAIGHT LINES

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION C) (OBJECTIVE TYPE QUESTIONS) (MORE THAN ONE ANSWER)|14 Videos
  • STATISTICS

    AAKASH INSTITUTE ENGLISH|Exercise Section-C Assertion-Reason|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta roots of x^(2)-6p_(1)x+2=0,beta,gamma are roots of x^(2)-6p_(2)x+3=0and gamma,alpha are roots of equation x^(2)-6p_(3)x+6=0 where p_(1),p_(2),p_(3) are positive then The values of p_(1),p_(2),p_(3) respectively are

If alpha,beta roots of x^(2)-6p_(1)x+2=0,beta,gamma are roots of x^(2)-6p_(2)x+3=0and gamma,alpha are roots of equation x^(2)-6p_(3)x+6=0 where p_(1),p_(2),p_(3) are positive then The values of alpha, beta, gamma respectively are

If A(alpha,1/alpha),B(beta,1/beta) "and" C(gamma,1/gamma) are the vertices of Delta ABC where alpha,beta are roots of x^(2)-6p_(1)x+2 =0 : beta,gamma are roots of x^(2)-6p_(2)x+3 = 0 and gamma, alpha are roots of x^(2)-6p_(3)x+6=0(p_(1),p_(2),p_(3) are positive) then find the co-ordinates of centroid of Delta ABC

If alpha,beta and gamma are roots of equation x^(3)-3x^(2)+1=0 , then the value of ((alpha)/(1+alpha))^(3)+((beta)/(1+beta))^(3)+((gamma)/(1+gamma))^(3) is __________.

If alpha,beta,gamma are the roots of the equation x^3-p x+q=0, then find the cubic equation whose roots are alpha/(1+alpha),beta/(1+beta),gamma/(1+gamma) .

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

if alpha, beta, gamma are the roots of x^(3) + x^(2)+x + 9=0 , then find the equation whose roots are (alpha +1)/(alpha -1) , (beta+1)/(beta -1), (gamma+1)/(gamma -1)

If alpha , beta are the roots of x^2-p(x+1)+c=0 then (1+alpha )( 1+ beta )=

If alpha, beta, gamma are the roiots of x^(3) - 10x^(2) +6x - 8 = 0 then alpha^(2) + beta^(2) + gamma^(2) =

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of alpha^(2)beta+alpha^(2)gamma+beta^(2)alpha+beta^(2)gamma+gamma^(2)alpha+gamma^(2)beta is equal to