Home
Class 12
MATHS
{:("Column-I","Column-II"),(A.f(x) = (1)...

`{:("Column-I","Column-II"),(A.f(x) = (1)/(sqrt(x -2)),p.lim_(x to 0)f(x) =1),(B. f(x) = (3x - "sin"x)/(x + "sin" x), q. lim_(x to 0)f(x) = 0),(C.f(x) = x "sin"(pi)/(x) f(0)=0,r.lim_(x to oo) f(x) = 0),(f(x) = tan^(-1) (1)/(x),s.lim_(x to 0) "does not exist"):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to match the functions in Column I with their corresponding limits in Column II. Let's analyze each function step by step. ### Step 1: Analyze Function A **Function:** \( f(x) = \frac{1}{\sqrt{x - 2}} \) **Limit as \( x \to 0 \):** - Substitute \( x = 0 \): \[ f(0) = \frac{1}{\sqrt{0 - 2}} = \frac{1}{\sqrt{-2}} \text{ (imaginary number)} \] - Therefore, the limit does not exist. **Limit as \( x \to \infty \):** - Substitute \( x \to \infty \): \[ \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{1}{\sqrt{x - 2}} = \frac{1}{\sqrt{\infty}} = 0 \] **Conclusion for A:** - \( \lim_{x \to 0} f(x) \) does not exist. - \( \lim_{x \to \infty} f(x) = 0 \) matches with \( r \). ### Step 2: Analyze Function B **Function:** \( f(x) = \frac{3x - \sin x}{x + \sin x} \) **Limit as \( x \to 0 \):** - Substitute \( x = 0 \): \[ f(0) = \frac{3(0) - \sin(0)}{0 + \sin(0)} = \frac{0}{0} \text{ (indeterminate form)} \] - Apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{3 - \cos x}{1 + \cos x} \] - Substitute \( x = 0 \): \[ = \frac{3 - 1}{1 + 1} = \frac{2}{2} = 1 \] **Conclusion for B:** - \( \lim_{x \to 0} f(x) = 1 \) matches with \( p \). ### Step 3: Analyze Function C **Function:** \( f(x) = x \sin\left(\frac{\pi}{x}\right) \), with \( f(0) = 0 \) **Limit as \( x \to 0 \):** - Substitute \( x \to 0 \): \[ \lim_{x \to 0} x \sin\left(\frac{\pi}{x}\right) \] - Since \( \sin\left(\frac{\pi}{x}\right) \) oscillates between -1 and 1, we have: \[ -x \leq x \sin\left(\frac{\pi}{x}\right) \leq x \] - As \( x \to 0 \), both bounds approach 0. - By the Squeeze Theorem: \[ \lim_{x \to 0} x \sin\left(\frac{\pi}{x}\right) = 0 \] **Conclusion for C:** - \( \lim_{x \to 0} f(x) = 0 \) matches with \( q \). ### Step 4: Analyze Function D **Function:** \( f(x) = \tan^{-1}\left(\frac{1}{x}\right) \) **Limit as \( x \to 0 \):** - As \( x \to 0^+ \): \[ \tan^{-1}\left(\frac{1}{0^+}\right) = \tan^{-1}(\infty) = \frac{\pi}{2} \] - As \( x \to 0^- \): \[ \tan^{-1}\left(\frac{1}{0^-}\right) = \tan^{-1}(-\infty) = -\frac{\pi}{2} \] - Since the left-hand limit and right-hand limit do not match, the limit does not exist. **Conclusion for D:** - \( \lim_{x \to 0} f(x) \) does not exist, matches with \( s \). ### Final Matching: - A matches with \( r \): \( \lim_{x \to \infty} f(x) = 0 \) - B matches with \( p \): \( \lim_{x \to 0} f(x) = 1 \) - C matches with \( q \): \( \lim_{x \to 0} f(x) = 0 \) - D matches with \( s \): \( \lim_{x \to 0} f(x) \) does not exist. ### Summary of Results: - A → r - B → p - C → q - D → s
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - G|5 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - H|2 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - E|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(|x|)/(x) , then show that lim_(xrarr0) f(x) does not exist.

Calculate lim_(x to 0) f(x) , where f(x) = (1)/(x^(2)) for x gt 0

Given f(x)={((x+|x|)/x,x!=0),(-2,x=0):} show that lim_(xto0)f(x) does not exist.

If f(x)=sgn(x)" and "g(x)=x^(3) ,then prove that lim_(xto0) f(x).g(x) exists though lim_(xto0) f(x) does not exist.

Find lim_(x to 0) f(x) , where f(x) = {{:(x -1,x lt 0),(0,x = 0),(x =1,x gt 0):}

Find lim_(X to 0) f(x) where f(x) = {{:(x, x!=0),(5,x=0):}}

If f(x)=x sin(1/x), x!=0 then (lim)_(x->0)f(x)=

If the function f (x) = {{:(3,x lt 0),(12, x gt 0):} then lim_(x to 0) f (x) =

If F (x) = {{:(-x^(2) + 1, x lt 0),(0,x = 0),(x^(2) + 1,x gt = 0):} , .then lim_(x to 0) f(x) is

If f(x)={(xsin,((1)/(x)),xne0),(0,,x=0):} Then, lim_(xrarr0) f(x)