Home
Class 12
MATHS
Let y = 1 + (a(1))/(x - a(1)) + (a(2) x)...

Let `y = 1 + (a_(1))/(x - a_(1)) + (a_(2) x)/((x - a_(1))(x - a_(2))) + (a_(3) x^(2))/((x - a_(1))(x - a_(2))(x - a_(3))) + … (a_(n) x^(n - 1))/((x - a_(1))(x - a_(2))(x - a_(3))..(x - a_(n)))` Find `(dy)/(dx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) of the given function \[ y = 1 + \frac{a_1}{x - a_1} + \frac{a_2 x}{(x - a_1)(x - a_2)} + \frac{a_3 x^2}{(x - a_1)(x - a_2)(x - a_3)} + \ldots + \frac{a_n x^{n-1}}{(x - a_1)(x - a_2)(x - a_3) \ldots (x - a_n)}, \] we can follow these steps: ### Step 1: Rewrite the Function We can express \( y \) in a more compact form. Notice that the terms can be rewritten as: \[ y = \sum_{k=0}^{n} \frac{a_k x^{k-1}}{\prod_{j=1}^{k}(x - a_j)} \] for \( k = 1 \) to \( n \). The first term is simply 1. ### Step 2: Identify the Structure We can factor out common terms from the series. The structure of \( y \) suggests that it can be expressed as: \[ y = \frac{x^n}{\prod_{j=1}^{n}(x - a_j)}. \] ### Step 3: Take the Natural Logarithm To differentiate, we can take the natural logarithm of both sides: \[ \ln y = \ln \left( \frac{x^n}{\prod_{j=1}^{n}(x - a_j)} \right). \] Using properties of logarithms, we can rewrite this as: \[ \ln y = n \ln x - \sum_{j=1}^{n} \ln(x - a_j). \] ### Step 4: Differentiate Both Sides Now, we differentiate both sides with respect to \( x \): \[ \frac{1}{y} \frac{dy}{dx} = \frac{n}{x} - \sum_{j=1}^{n} \frac{1}{x - a_j} \cdot \frac{d}{dx}(x - a_j). \] Since \( \frac{d}{dx}(x - a_j) = 1 \), we have: \[ \frac{1}{y} \frac{dy}{dx} = \frac{n}{x} - \sum_{j=1}^{n} \frac{1}{x - a_j}. \] ### Step 5: Solve for \( \frac{dy}{dx} \) Multiplying through by \( y \): \[ \frac{dy}{dx} = y \left( \frac{n}{x} - \sum_{j=1}^{n} \frac{1}{x - a_j} \right). \] ### Final Expression Substituting back for \( y \): \[ \frac{dy}{dx} = \frac{x^n}{\prod_{j=1}^{n}(x - a_j)} \left( \frac{n}{x} - \sum_{j=1}^{n} \frac{1}{x - a_j} \right). \] ### Summary Thus, the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = \frac{x^n}{(x - a_1)(x - a_2) \ldots (x - a_n)} \left( \frac{n}{x} - \left( \frac{1}{x - a_1} + \frac{1}{x - a_2} + \ldots + \frac{1}{x - a_n} \right) \right). \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - H|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

Let (1 + x)^(n) = sum_(r=0)^(n) a_(r) x^(r) . Then ( a+ (a_(1))/(a_(0))) (1 + (a_(2))/(a_(1)))…(1 + (a_(n))/(a_(n-1))) is equal to

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

If a_(1),a_(2),a_(3),a_(4),,……, a_(n-1),a_(n) " are distinct non-zero real numbers such that " (a_(1)^(2) + a_(2)^(2) + a_(3)^(2) + …..+ a_(n-1)^(2))x^2 + 2 (a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) + ……+ a_(n-1) a_(n))x + (a_(2)^(2) +a_(3)^(2) + a_(4)^(2) +......+ a_(n)^(2)) le 0 " then " a_(1), a_(2), a_(3) ,....., a_(n-1), a_(n) are in

a1,a2,a3.....an are in H.P. (a_(1))/(a_(2)+a_(3)+ . . .+a_(n)),(a_(2))/(a_(1)+a_(3)+ . . . +a_(n)),(a_(3))/(a_(1)+a_(2)+a_(4)+ . . .+a_(n)), . . .,(a_(n))/(a_(1)+a_(2)+ . . . +a_(n-1)) are in

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is

if (5x^(2) +2)/(x^(3)+x)=(A_(1))/(x)+(A_(2)x+A_(3))/(x^(2)+1), then (A_(1), A_(2), A_(3))=

If a_(1) = 2 and a_(n) - a_(n-1) = 2n (n ge 2) , find the value of a_(1) + a_(2) + a_(3)+…+a_(20) .

If (a_(2)a_(3))/(a_(1)a_(4))=(a_(2)+a_(3))/(a_(1)+a_(4))=3((a_(2)-a_(3))/(a_(1)-a_(4))) , then a_(1),a_(2),a_(3),a_(4) are in

Let (1 + x^(2))^(2) (1 + x)^(n) = a_(0) + a_(1) x + a_(2) x^(2) + … if a_(1),a_(2) " and " a_(3) are in A.P , the value of n is