Home
Class 12
MATHS
If y = (1)/(1 + x^(a - b) + x^(c - b)) +...

If `y = (1)/(1 + x^(a - b) + x^(c - b)) + (1)/(1 + x^(b-c) + x^(a - c)) + (1)/(1 + x^(b - a) + x^(c - a))` then find `(dy)/(dx)` at `e^(a^(b^(c )))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \( y \) given by: \[ y = \frac{1}{1 + x^{a - b} + x^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}} \] and then evaluate \( \frac{dy}{dx} \) at \( x = e^{a^{b^{c}}} \). ### Step 1: Simplifying the Expression for \( y \) We can rewrite each term in \( y \): 1. The first term: \[ \frac{1}{1 + x^{a - b} + x^{c - b}} \] 2. The second term: \[ \frac{1}{1 + x^{b - c} + x^{a - c}} \] 3. The third term: \[ \frac{1}{1 + x^{b - a} + x^{c - a}} \] ### Step 2: Finding a Common Denominator The common denominator for all three fractions is: \[ (1 + x^{a - b} + x^{c - b})(1 + x^{b - c} + x^{a - c})(1 + x^{b - a} + x^{c - a}) \] However, we can observe that the structure of the terms suggests that they might simplify significantly. ### Step 3: Observing the Pattern If we add the three fractions, we notice that each term has a similar structure. The sum can be simplified as follows: \[ y = \frac{(1 + x^{b - c} + x^{a - c})(1 + x^{b - a} + x^{c - a}) + (1 + x^{a - b} + x^{c - b})(1 + x^{b - a} + x^{c - a}) + (1 + x^{a - b} + x^{c - b})(1 + x^{b - c} + x^{a - c})}{(1 + x^{a - b} + x^{c - b})(1 + x^{b - c} + x^{a - c})(1 + x^{b - a} + x^{c - a})} \] ### Step 4: Simplifying Further After simplification, we find that the numerator and denominator yield the same expression, leading to: \[ y = 1 \] ### Step 5: Finding the Derivative \( \frac{dy}{dx} \) Since \( y \) is a constant (1), the derivative with respect to \( x \) is: \[ \frac{dy}{dx} = 0 \] ### Step 6: Evaluating at \( x = e^{a^{b^{c}}} \) Since \( \frac{dy}{dx} = 0 \), it holds true for all values of \( x \), including \( x = e^{a^{b^{c}}} \). ### Final Answer Thus, we conclude that: \[ \frac{dy}{dx} \text{ at } x = e^{a^{b^{c}}} = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - H|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

If y=1/(1+x^(a-b)+x^(c-b))+1/(1+x^(b-c)+x^(a-c))+1/(1+x^(b-a)+x^(c-a)), then (dy)/(dx) is equal to (a) 1 (b) (a+b+c)^(x+b+c-1) 0 (d) none of these

If y=1/(1+x^(a-b)+x^(c-b))+1/(1+x^(b-c)+x^(a-c))+1/(1+x^(b-a)+x^(c-a)), then (dy)/(dx) is equal to (a) 1 (b) (a+b+c)^(x+b+c-1) 0 (d) none of these

Show that: 1/(1+x^(b-a)+x^(c-a))+1/(1+x^(a-b)+\ x^(c-b))+1/(1+x^(b-c)+\ x^(a-c))=1

Prove that: 1/(1+x^(b-a)+\ x^(c-a))+1/(1+x^(a-b)+\ x^(c-b))+1/(1+x^(b-c)+x^(a-c))=1

Show that: (i) (x^(a(b-c)))/(x^(b(a-c)))-:((x^b)/(x^a))^c=1,

(x^(1/(a-b)))^(1/(a-c))xx(x^(1/(b-c)))^(1/(b-a))xx(x^(1/(c-a)))^(1/(c-b))

int( x-1)e^(-x) dx is equal to : a) ( x- 2)e^(x) + C b) x e^(-x) + C c) - x e^(x) + C d) ( x+1)e^(-x) +C

If a b c = 0, then ({(x^a)^b}^c)/({(x^b)^c}^a) = (a)3 (b) 0 (c) -1 (d) 1

If y=(tan^(-1)x-cot^(-1)x)/(tan^(-1)x+cot^(-1)x) , find ((dy)/(dx)])_(x=-1) 0 (b) 1 (c) 2//pi (d) -1

Simplify: (i)\ ((x^(a+b))/(x^c))^(a-b)\ ((x^(b+c))/(x^a))^(b-c)\ ((x^(c+a))/(x^b))^(c-a) (ii)\ ((x^l)/(x^m))^(1/(lm))\ xx\ ((x^m)/(x^n))^(1/(mn))\ xx\ \ ((x^n)/(x^l))^(1/(ln))