Home
Class 12
MATHS
Evaluate lim(x to 0) [(2008 "sin x)/(x)]...

Evaluate `lim_(x to 0) [(2008 "sin x)/(x)] + [(2009 tan x)/(x)]` where [x] denotes the greatest integer `le x`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \left[ \frac{2008 \sin x}{x} + \frac{2009 \tan x}{x} \right], \] we start by using the known limits of \(\frac{\sin x}{x}\) and \(\frac{\tan x}{x}\) as \(x\) approaches 0. ### Step 1: Use the limits of \(\sin x\) and \(\tan x\) We know that: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \quad \text{and} \quad \lim_{x \to 0} \frac{\tan x}{x} = 1. \] ### Step 2: Substitute the limits into the expression Using these limits, we can substitute into our limit expression: \[ \lim_{x \to 0} \left[ \frac{2008 \sin x}{x} + \frac{2009 \tan x}{x} \right] = 2008 \cdot \lim_{x \to 0} \frac{\sin x}{x} + 2009 \cdot \lim_{x \to 0} \frac{\tan x}{x}. \] ### Step 3: Calculate the limit Substituting the known limits: \[ = 2008 \cdot 1 + 2009 \cdot 1 = 2008 + 2009 = 4017. \] ### Step 4: Consider the greatest integer function Since the problem states that \(x\) denotes the greatest integer function, we need to apply the greatest integer function to our result. The greatest integer function \([x]\) gives the largest integer less than or equal to \(x\). Thus, we have: \[ \lfloor 4017 \rfloor = 4017. \] ### Final Answer Therefore, the final answer is: \[ \boxed{4017}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - H|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x to 0) (sin x)/(tan x)

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

Evaluate: lim_(xrarr0) (tan x-sin x)/(x^(3))

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

lim_(xto1) (xsin(x-[x]))/(x-1) , where [.] denotes the greatest integer function, is equal to

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

Evaluate : [lim_(x to 0) (tan x)/(x)] , where [*] represents the greatest integer function.

Evaluate : [lim_(x to 0) (sin x)/(x)] , where [*] represents the greatest integer function.

lim_(xrarr oo) (log[x])/(x) , where [x] denotes the greatest integer less than or equal to x, is